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a b s t r a c t

This paper contributes towards a more complete approach to capture very strong shocks in various appli-
cations of high speed compressible Navier–Stokes flows including blasts and explosions using second
order finite volume method on unstructured grids. The HLLC Riemann solver is employed to solve for
fluxes at cell interfaces with second order approximation of local Riemann states, thus obtaining second
order accuracy. In order to stabilize solutions due to high order approximation of solutions in the pres-
ence of discontinuities, several strategies are presented in this work. Slope limiters are first explored on
unstructured grid to maintain monotonicity of the solution reconstruction following local extremum
diminishing (LED) or total variation diminishing (TVD) criteria. The hybrid HLLC/HLLE scheme is
appended to eliminate shock instabilities in very strong shock cases. To improve resolution of shocks,
a local mesh adaptation scheme is used to increase mesh resolution in areas of high gradients. The
scheme only regenerates mesh locally and is proven to be robust and efficient for capturing of unsteady
shock propagation applications. Comparisons on the accuracy and performance of different methods on
various applications are drawn to suggest a more robust and efficient method for capturing shocks on
unstructured grids.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

High speed compressible flows are fundamental to many engi-
neering problems involving hypersonic flows, blasts and explo-
sions, shock wave propagations. A wide range of numerical
methods have been developed for simulations of compressible
flows in the presence of very strong shocks. In particular, second
order finite volume methods on unstructured grids have become
desirable computations in many industrial applications. In these
high speed compressible flow applications, strong shocks in the
solutions present a formidable challenge in resolving discontinu-
ities. It is then essential to derive an effective approach to accu-
rately capture flow features including strong shocks.

In capturing shocks, Godunov-type schemes [4] has been popu-
lar for its conservative treatment of resolving discontinuities. Un-
der a basic assumption of piece-wise constant solution across
elements in the Godunov-type methods, intercell fluxes need to
be constructed from the current solution in order to compute the
solution in the next stage. The intercell fluxes are solutions to
the so-called local Riemann problem defined at cell interfaces.
The local Riemann problems may be solved analytically, if desired.
However, existence of exact solutions to the Riemann problems is

not always trivial; in many cases, iterative methods are employed
to solve for intercell fluxes. Alternatively, solutions to local
Riemann problems can be solved approximately with the original
motivation that it can provide the solutions more cheaply than ex-
act solvers. Since the pioneering work by [10,11], the research on
approximate Riemann solvers has received considerable progress
over the last few decades and formed a foundation for extensive
studies on shock capturing.

The combination of Godunov-type schemes with approximate
Riemman solvers are widely adopted and become a standard for
benchmarking of any new schemes. Among those Roe’s scheme
[10], Harten–Lax–van Leer (HLL) schemes [3] and its variants are
popular choices in many computations. Despite huge success over
a large class of problems, there are fundamental deficiencies of
the Godunov-type framework, especially for very strong shock
applications. In [1] it reported and classified failures of various
approximate Riemann solvers on multidimensional problems. The
limitations of the Riemann solvers to shock-capturing properties
was catalogued according to their failing modes including expan-
sion shock, negative internal energy, slowly-moving shock, the
carbuncle phenomenon, kinked Mach stem, and odd–even decou-
pling. Details of these problem can be found in the reference cited
therein [1] in which the author proposed a strategy of using com-
bined fluxes with more dissipative flux such as HLLE in the shock
area. In [2], the so-called shock instability in multidimensional
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flows and the nonexistence of a solution for strong receding flows
are major problems in such failings of approximate Riemann solv-
ers. The failures were attributed to the dissipative term in mass
fluxes defined in [2]; thus it was suggested that making the pressure
contribution in dissipative terms vanish by controlling the magni-
tude of wave speed forms a shock-stable scheme.

Having mentioned the failures of approximate Riemann solvers
in the framework of Godunov-type schemes, it is worth noting that
low resolution is also considered one of the biggest shortcomings
of such schemes. For first order methods, it requires very fine grids
for better resolutions, particularly for shock wave interactions.
Higher order accurate methods are thus desirable for numerical
simulations of high speed compressible flows. Extension of first
order finite volume methods to higher order is a favourable
option since it only requires one to employ higher order recon-
structions of solutions before feeding them to local Riemann solv-
ers. While second order finite volume schemes have been widely
adopted in many industrial codes, higher-than-second-order
methods remains a formidable challenge for large scale problems,
especially the construction of such schemes on unstructured
grids. There has been much progress in this research direction over
the last few decades including the development of essentially
non-oscillatory (ENO) methods, discontinuous Galerkin methods
[13] and their variants. However, it is necessary to stabilize the
solution to eliminate oscillations due to high order approximations
as discontinuities develop in the solutions. In many cases, the
inherent diffusion from numerical discretizations is not sufficient
and a special treatment is required to prevent oscillations from
growing in the solutions. Among various treatments, artificial
viscosity and limiters are frequently employed to stabilize shocks
and discontinuities. In using artificial viscosity [12], numerical
dissipation is directly added into systems to help stabilize the
discretization. The approach has been widely used with successful
results for shock capturing in various discretization methods;
however, adding viscosity certainly reduces stability of the system
especially for very strong shock cases. Alternatively, in using
limiters, the solution is stabilized by reducing the interpolating
order across the shocks; therefore it may affect the order of
accuracy in the vicinity of the shock front. Essentially, employment
of stabilizing approaches will introduce deficiencies to high order
discretizations. Despite considerable progress in deriving high
order methods for high speed compressible flows, one has yet
found robust and efficient remedies fully addressing all the above
issues related to this type of applications.

In this work, we first review our numerical method of finite vol-
ume discretization for compressible Navier–Stokes flows on
unstructured grids. In the next section, a brief description of the
method is given. The edge-based vertex-centered finite volume ap-
proach requires the construction of dual mesh by connecting edge
midpoints, element centroids, face centroids in such a way that
only one grid node is contained in each control volume. Edge-based
data structure together with median dual control volume effi-
ciently facilitate discretization of inviscid and viscous fluxes of
compressible Navier–Stokes equations. In particular, HLLC flux
scheme is employed as an approximate Riemann solver for solving
flux functions at volume interfaces. The HLLC scheme is appended
by a second order approximation of local Riemann states; thus
obtaining second order accuracy. The second order reconstruction
in turn makes the scheme unstable for strong shocks and disconti-
nuities. In the next section, various treatments to stabilize the solu-
tions are proposed and implemented including various slope
limiters and a hybrid HLLC approach to overcome instability of
the second order method for strong shocks. These remedies essen-
tially reduce the approximation to first order accuracy in the vicin-
ity of discontinuities. Therefore, we proposed an robust and
effective mesh adaptive approach to increase the resolution in

areas of steep gradients. In our proposed approach, a solution sen-
sor is first designed to detect regions of high gradient; subse-
quently a robust adaptivity procedure was applied to regenerate
three dimensional grid in those regions. Employing this local mesh
adaptivity strategy, it is able to enhance the resolution of solutions
in the presence of strong shocks with affordable computational
cost.

2. Unstructured grid finite volume discretization

2.1. Governing equations

The unsteady inviscid compressible flows are governed by the
time-dependent, Euler equations on a three-dimensional Cartesian
domain X � R3, with surface @X, can be expressed in integral form
asZ

X

@U
@t

dxþ
Z
@X

F jnj dx ¼ 0; ð1Þ

where the conventional summation is employed and nj is the out-
ward unit normal vector to @X. The unknown vector of the conser-
vative variables and inviscid flux tensor are given by

U ¼

q
qu1

qu2

qu3

q�

0BBBBBB@

1CCCCCCA; F j ¼

quj

qu1uj þ pd1j

qu2uj þ pd2j

qu3uj þ pd3j

ujðq�þ pÞ

0BBBBBB@

1CCCCCCA: ð2Þ

Here q denotes the fluid density, ui the i’th component of the veloc-
ity vector and � the specific total energy. The system is closed by
assuming the gas to be calorically perfect, thus setting

p ¼ qRT; ð3Þ

and

� ¼ cvT þ 1
2

ukuk; ð4Þ

where R is the real gas constant and cv = cp � R is the specific heat at
constant volume. In this expression, cp is the specific heat at con-
stant pressure. Throughout this work, the ratio of the specific heats,

c ¼ cp

cv
; ð5Þ

is set to c = 1.4 which is the value for air at standard conditions.

2.2. Edge-based vertex-centred unstructured FV method

The computational domain X is subdivided into a set of
non-overlapping tetrahedral elements using a Delaunay mesh gen-
eration process with automatic point creation. To enable the
implementation of a cell vertex finite volume solution approach,
a median dual mesh is constructed by connecting edge midpoints,
element centroids and face centroids such that only one node is
present in each control volume. Each edge of the grid is associated
with a segment of the dual mesh interface between the nodes con-
nected to the edge. The dual mesh interface inside the computa-
tional domain surrounding node I is denoted CI, while the parts
of the dual situated on the computational boundary are termed
CB

I , so that CI \ CB
I ¼ ;. The triangular facets which define the con-

trol volume interface surrounding node I are denoted by CK
I . In

three dimensions, the segment of the dual mesh associated with
an edge is a surface. This surface is defined using triangular facets,
where each facet is connected to the midpoint of the edge, a neigh-
bouring element centroid and the centroid of an element face con-
nected to the edge. With this dual mesh definition, the control
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