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a b s t r a c t

The objective of this work is to quantify the influence of the number of computational drops and grid
spacing on the accuracy of predicted flow statistics and to possibly identify the minimum number, or,
if not possible, the optimal number of computational drops that provides minimal error in flow predic-
tion. For this purpose, Large Eddy Simulation (LES) of a mixing layer with evaporating drops has been per-
formed using the dynamic Smagorinsky model and employing various numbers of computational drops.
The LES were performed by reducing the number of physical drops by a factor varying from 8 to 128 to
obtain the ensemble of computational drops, and by utilizing either a coarse or a fine grid. A set of first
order and second order gas-phase statistics as well as drop statistics are extracted from LES predictions
and are compared to results obtained by filtering a Direct Numerical Simulation (DNS) database. First
order statistics such as Favre averaged streamwise velocity, Favre averaged vapor mass fraction, and
the drop streamwise velocity are predicted accurately independent of the number of computational
drops and grid spacing. Second order flow statistics depend both on the number of computational drops
and on grid spacing. The scalar variance and turbulent vapor flux are predicted accurately by the fine
mesh LES only when the computational drop field is reduced by a factor of no more than 32, and by
the coarse mesh LES reasonably accurately for all computational drop field values. This is attributed to
the fact that when the grid spacing is coarsened, the number of drops in a computational cell must
not be significantly lower than that in the DNS.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Multiphase turbulent flows are encountered in many practical
applications including turbine engines or natural phenomena
involving particle dispersion. Numerical computations of multi-
phase turbulent flows are important because they provide a cheap-
er alternative to performing experiments during an engine design
process or because they can provide predictions of pollutant dis-
persion, etc. For flows with volumetrically dilute particle loading,
the most accurate method of numerically simulating the flow is
based on Direct Numerical Simulation (DNS) of the governing
equations in which all scales of the flow responsible for the over-
whelming amount of dissipation are resolved. DNS, however, re-
quires high computational cost and cannot be used in
engineering design applications where iterations among several
design conditions are necessary or utilized. Large Eddy Simulation
(LES) provides a cheaper alternative to numerically simulate mul-
tiphase turbulent flows, although it has modeling requirements
which do not exist in DNS. In LES only the energy-containing large
scales, which are of engineering interest, are resolved and the more

universal small scales are modeled thereby minimizing computa-
tional costs. The LES equations are obtained by filtering the govern-
ing equations. The effect of the filtered small-scale motion on
resolved large scale motion appears as Subgrid-Scale (SGS) terms
in the LES equation and it depends on the unresolved or ‘‘sub-grid’’
flow field which is unavailable; thus, these terms must be mod-
eled. This modeling is typically done through representing the sub-
grid scale terms as functions of the large scale flow field.

Another approximation often employed in LES of multiphase
turbulent flows is similar in spirit to the reduction in flow scales
from DNS to LES and consists in modeling the physical drop field
through representing a group of drops by a single ‘‘computational’’
drop [1–4]. This reduction in number of tracked drops leads to a
faster simulation but it may also lead to loss of accuracy. Further-
more, there does not seem to be a well-established criterion as to
the choice of the reduction factor from the physical drop field.
Sankaran and Menon [1] tracked 105 computational particles and
justified the choice of this number of particles as being large en-
ough to perform meaningful drop statistics. Apte et al. [2] proposed
a hybrid method wherein the drops are dynamically tracked but
the size and number density of drops produced from drop breakup
was determined by the evolution of a PDF in the space of the drop-
radius. The method involved following both physical drops and
computational drops which were only created if the total number
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of drops in a control volume exceeded a specified threshold. Re-
sults showed that the computation was more accurate when an
ensemble of 6000 entities consisting of both drops and computa-
tional drops were tracked than when only 300 computational
drops were followed. Since the number of tracked particles was
not the same in the two simulations, the only clear conclusion is
that for this relatively small number of tracked particles, it is better
to follow a larger than a smaller number of them. Salewski [4] per-
formed LES with 4500, 11,000, 28,000 and 54,000 computational
drops and found that ‘‘there was no striking difference between
the solutions’’ when the number of drops was increased beyond
11,000. However, Salewski’s [4] conclusions were based on exam-
ining integral quantities such as the liquid volume fraction and the
pdf of the drop size distribution. It is not clear if Salewski’s [4] con-
clusions hold for higher order flow statistics such as Reynolds
stresses and scalar fluxes.

To determine the effect of the computational-drop approach on
the accuracy of the predicted flow and drop fields, we perform here
a series of simulations in which we vary the factor by which we re-
duce the number of physical drops to the number of computational
drops, and we consider the effect of this reduction in conjunction
with two different grid spacings. For the purpose of these compar-
isons, we have created a new DNS database with a much larger
number of drops than in the past [3] and with different initial con-
ditions. This DNS database is here used to evaluate the accuracy of
the LES predictions.

2. Basic governing equations and LES equations

The situations studied are those in which the volume fraction of
the drops in the carrier gas is very small (less than O(10�3)). Also,
the drops are much smaller than the Kolmogorov scale, gK, and are
assumed to be spherical. It is thus legitimate to treat the drops as
point sources for the purpose of calculating the contribution of
mass, momentum and energy to the gas phase [5]. Consistent with
these assumptions, the carrier gas phase is treated in an Eulerian
framework, whereas the dispersed liquid drops are tracked in a
Lagrangian framework [3].

2.1. Basic governing equations

The compressible continuity, momentum, energy and species
conservation equations are solved for the conserved variable vec-
tor / = {q,qui,qet,qYV}, where q is the density, ui is the velocity
in the xi coordinate, et is the total energy and YV is the mass fraction
of the vapor. The governing equations are
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where t is the time and the source terms (Smass,Smom,i and Senergy)
which appear in Eqs. (1)–(4) describe the exchange of mass,
momentum and energy between the two phases. Both carrier gas
(mass fraction YC) and vapor are assumed to be perfect gases and
the perfect gas equation is used to relate the pressure (p) and the
temperature (T) through

p ¼ qRT; ð5Þ

where R = YVRV + YCRC, RV = Ru/mv, RC = Ru/mC, Ru is the universal gas
constant, mC and mV are the molar masses of the carrier gas and the

vapor respectively; YC + YV = 1. The total enthalpy (h) is the sum of
the enthalpies of the carrier gas and the vapor

h ¼ hV YV þ hCYc; ð6Þ

where hC and hV are the enthalpies of the pure gases.
The temperature is calculated from et through

et ¼ CvT þ h0
V YV þ

1
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where Cv is the heat capacity at constant volume. Considering the
small variation of the pressure and temperature observed in the
flow, we assume that the specific heat capacities of the gases are
constant within this range.

The viscous stresses (rij) are computed using
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1
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where l is the viscosity coefficient and Sij is the rate of the strain
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The vapor mass flux in Eq. (4) in and heat flux in Eq. (3) has the
form
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where VVj is the vapor diffusion velocity, D is the diffusion coeffi-
cient and k is the thermal conductivity. In Eqs. (8), (10) and (11),
l, D and k are assumed constant, and are related to each other
through the Prandtl and Schmidt numbers, Pr = lCp/k and Sc =
l/(qD).

The governing equations for an individual drop describing the
evolution of its position (Xi), velocity (vi), temperature (Td) and
the mass (md) are

dXi
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¼ v i; ð12Þ
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where Fdrag,i is the drag force, Q is the heat flux between gas phase
and drop, _md is the evaporation rate, CL is the heat capacity of the
drop liquid and LV is the latent heat of vaporization. The expressions
for the drag, heat flux and the evaporation rate involve the use of
the following validated models for the description of a single drop
behavior:
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where Cp is the gas heat capacity at constant pressure, BM =
(YV,s � YV,f)/(1 � YV,s), where YV,s is calculated directly from the sur-
face vapor mole fraction which is obtained by equating the vapor
and liquid fugacities at the surface, YV,f is vapor mass fraction at
the drop location, and sd is the drop time constant given by

sd ¼
qld

2
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