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a b s t r a c t

This paper proposes an efficient parallel computing approach based on a high-order accurate compact
finite difference scheme in conjunction with a conventional domain decomposition method and MPI
libraries. The proposed parallel computing approach consists of two major features: (a) a newly devel-
oped compact finite difference scheme with extended stencils containing halo points around subdomain
boundaries, and (b) a predictor–corrector type implementation of a compact filter that effectively sup-
presses spurious errors from the subdomain boundaries. The current work employs three halo cells for
the inter-node communication, based on which the coefficients of the new compact scheme at the sub-
domain boundaries are optimized to achieve as high level of resolution and accuracy as the interior com-
pact scheme provides. Also, an optimal set of cut-off wavenumbers of the compact filter that minimizes
spurious errors is suggested. It is shown that the level of errors from the proposed parallel calculations
lies within the same order of magnitude of that from the single-domain serial calculations. The overall
accuracy and linear stability of the new parallel compact differencing-filtering system are confirmed
by grid convergence tests and eigenvalue analyses. The proposed approach shows a substantial improve-
ment with respect to existing methods available.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last decade, compact finite difference schemes have
become widespread in direct numerical simulation (DNS), large
eddy simulation (LES) and computational aeroacoustics (CAA) be-
cause they provide both high-order accuracy and high-resolution
characteristics via optimization of the coefficients [1–5]. Currently,
almost every research activity in the area of CAA/LES/DNS makes
extensive use of parallel computing techniques owing to the rapid
growth of modern supercomputing capabilities. However, the use
of the compact finite difference schemes in a parallel computing
environment is not straightforward, particularly when domain
decomposition with MPI (message passing interface) libraries is
concerned. This is mainly due to their implicit nature associated
with the solution of banded Hermitian matrix systems. Common
approaches for parallelizing such systems include: reduced parallel
diagonal dominant algorithm [6]; alternating-direction line-relax-
ation method [7]; pipelined implementation of Thomas algorithm
[8]; and using a large area of overlap between two neighboring
subdomains [9]. These approaches, currently available for tridiago-
nal matrix systems, are significantly more expensive in terms of in-
ter-node communication than parallelizing standard finite

difference schemes, which undermines the genuine advantage of
using compact schemes.

Recently, Sengupta et al. [9], after reviewing the current state-
of-the-art of parallel computing strategies for compact schemes,
suggested that the implementation of compact schemes in an over-
lapped fashion with inclusion of filters might be used as an effi-
cient alternative to earlier more computationally expensive
parallelization strategies. They developed a new tridiagonal com-
pact scheme for this purpose incorporating six-point overlap be-
tween two adjacent subdomains. However, their benchmark tests
on vortex convection showed a controversial behavior of their
scheme resulting in higher error on a finer grid [9]. Also, some of
the unaddressed issues in their approach include: whether the par-
allelized system achieves the desired grid convergence rate, and
how much improvement could be made with different filters or
cut-off wavenumbers. These are important questions that need to
be answered. This paper takes all these issues into account and
aims to deliver a more reliable and efficient strategy of paralleliz-
ing compact schemes based on a halo-cell approach instead of the
overlapping method that demands more operations and memory.

In the current work the main platform is based on a pentadiag-
onal compact scheme contrary to the other above mentioned
works that are currently limited to tridiagonal schemes. The new
platform employs one of the latest pentadiagonal compact
schemes with fourth-order accuracy proposed by Kim [5] and ex-
tends his boundary formulations to accommodate wider stencils
that contain three halo cells from the adjacent subdomains.
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Although the new compact scheme across the subdomain bound-
aries does not precisely reproduce the interior resolution, the loss
of accuracy can be minimized. The new platform also includes a
pentadiagonal compact filter with sixth-order accuracy [10] to re-
move spurious errors, and introduces a predictor–corrector type of
execution in order to achieve almost identical error levels to those
from single-domain serial calculations. The compact filter has a
variable cut-off wavenumber that may change locally across the
subdomain boundaries, and this helps improve the filter perfor-
mance. Eigenvalue analyses and grid convergence tests confirm
that the entire differencing-filtering system provides linear stabil-
ity and fourth-order accuracy throughout the domain. The pro-
posed parallel computing approach is rigorously tested through a
variety of one-, two- and three-dimensional test cases using fully
nonlinear compressible Euler and Navier–Stokes equations in both
Cartesian and generalized coordinates.

The paper is organized as follows. Section 2 shows the develop-
ment of the new compact finite difference scheme with halo
points. Section 3 describes the implementation of a compact filter
based on predictor–corrector steps. Section 4 performs grid con-
vergence tests and linear stability analysis of the proposed com-
pact differencing-filtering system. Section 5 briefly introduces the
governing equations solved for the numerical tests. The results of
Euler and direct numerical simulations are presented and dis-
cussed in Sections 6 and 7. Performance and efficiency of the pro-
posed parallel computing approach is demonstrated in Section 8.
Finally concluding remarks are made in Section 9.

2. New compact finite difference scheme with halo points

This section presents a new compact finite difference scheme
developed for parallel computing based on domain decomposition
and MPI (message passing interface) libraries. It consists of a cen-
tral interior scheme and non-central boundary schemes that in-
volve three halo cells from the adjacent subdomain. Fourth-order
accuracy is maintained throughout the domain. The new boundary
schemes are specifically designed to construct a closed pentadiag-
onal matrix system within each subdomain. They are optimized to
achieve similar resolution characteristics to those of the interior
scheme.

2.1. Interior compact finite difference scheme

The present work employs a fourth-order central compact
scheme [5] for interior points, which is based on a pentadiagonal
platform and a seven-point stencil. It may be expressed as

b�f 0i�2 þ a�f 0i�1 þ �f 0i þ a�f 0iþ1 þ b�f 0iþ2

¼ 1
Dx

X3

m¼1

amðfiþm � fi�mÞ for 2 6 i 6 N � 2 ð2:1Þ

where fi and f 0i represent an objective function f(x) and its spatial
derivative @f ðxÞ=@x respectively at a location of interest xi. The bar
‘‘–’’ is used in order to distinguish numerical derivative (�f 0) from
the exact derivative (f 0). The spatial interval Dx = xi+1 � xi is a con-
stant independent of the index i in the computational domain
where all the grid points are equally spaced. The coefficients a, b,
a1, a2 and a3 optimized in [5] are listed in Table 1. The index runs

through 0 6 i6N within a subdomain, where i = 0 and i = N repre-
sent the subdomain boundaries. Accordingly, i 6 �1 or i P N + 1
indicate halo points from the adjacent subdomains. Eq. (2.1) being
used at i = 2 or i = N � 2 involves one of the halo points (f�1 or
fN+1) on the right-hand-side.

With Eq. (2.1) used for the interior points (i P 2), two additional
schemes are required for the boundary points (i = 0 and 1) in order
to close the pentadiagonal matrix and enable independent inver-
sion of the matrix in each subdomain. This approach demands less
inter-node communication than the earlier approaches mentioned
in Section 1. The formulation of the two additional schemes ob-
tained by using an extrapolation technique and optimization pro-
cedure is described in the following.

2.2. Formulation of boundary schemes with halo points

It is obvious that Eq. (2.1) applies directly on the interior points.
To be able to keep applying it at the boundary points (i = 0 and 1),
an extrapolation may be used to approximate the unknown
derivatives f 0ðxÞ in the halo area and substitute them with interior
(or known) terms. The following is a spline function from the
boundary (x = x0) and its first derivative that may be used for the
extrapolation [5]:

gðx�Þ ¼
XNA

m¼0

pmx�
m þ

XNB

m¼1

½qm cosð/mx�Þ þ rm sinð/mx�Þ� ð2:2Þ

g0ðx�Þ ¼ dgðx�Þ
dx

¼ 1
Dx

XNA

m¼1

mpmx�
m�1 �

XNB

m¼1

/m½qm sinð/mx�Þ � rm cosð/mx�Þ�
( )

ð2:3Þ

where x⁄ = (x � x0)/Dx is the non-dimensional coordinate from the
boundary. The extrapolation function is a linear combination of
polynomials and trigonometric series. The constants NA and NB rep-
resent the orders of each series. In this paper, NA = 4 is selected to
maintain the fourth-order accuracy and NB = 3 to match the number
of coefficients and available constraints. The coefficients pm

(m = 0, . . . , NA), qm and rm (m = 1, . . . , NB) should be determined by
matching constraints as described below. The control variables /m

(m = 1, . . . , NB) are introduced to optimize the resulting schemes
for the best resolution characteristics.

Eleven matching constraints are necessary since the number of
coefficients to be determined is 1 + NA + 2NB = 11, and they are as
follows:

gðmÞ ¼ fm for m ¼ �3;�2;�1ðhalo pointsÞ and 0; . . . ;4; ð2:4Þ

g0ðmÞ ¼ �f 0m for m ¼ 0;1;2: ð2:5Þ

Solving Eqs. (2.4) and (2.5) leads to the coefficients pm

(m = 0, . . . , 4), qm and rm (m = 1, 2, 3) being replaced by linear com-
binations of the known function values (f�3, . . . , f4) and the interior
derivatives (�f 00;

�f 01;
�f 02). However, the final coefficients are yet to be

determined once the control variables /1, /2 and /3 have been
fixed, which is shown later. Once all the coefficients are determined,

Table 1
Coefficients for Eq. (2.1).

a b a1 a2 a3

0.5862704032801503 0.9549533555017055e�1 0.6431406736919156 0.2586011023495066 0.7140953479797375e�2
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