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a b s t r a c t

Waves in shallow water are computed by moving blocks of water in the direction of the flow using a
Lagrangian method. The mass and momentum in the displaced-and-deformed blocks after the Lagrangian
advection are re-distributed back on to the Eulerian mesh to form new blocks at every increment of time.
This Lagrangian block advection guarantees for positive water depth. It also prevents the occurrence of
unphysical numerical oscillations. Several numerically challenging problems are considered in a series
of simulations using the method. The first problem is the tracking of wetting-and-drying interface in a
parabolic bowl. The second problem is the capture of depth and velocity discontinuities across the shock
waves. Finally, the block advection method is applied to calculate the flood waves overtopping a mean-
dering river. The results of the simulations are compared with the exact solutions. The convergence of
Lagrangian block advection towards the exact solutions is first-order accurate in the simulations of the
depth-and-velocity discontinuities.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Computational stability is crucial to many engineering simula-
tion problems including the flood waves over lands, the evolution
of avalanches, the run-up of waves on beaches and the overtopping
of water on levees. The computation must capture the discontinu-
ities across the shock waves and the discontinuities at the wave
fronts where the wet water meets the dry land. In the classical fi-
nite-volume simulations, the discontinuities are the source of
unphysical numerical oscillations which often lead the computa-
tion to failure. A variety of ad-hoc numerical methods have been
developed to manage the computational instability. Shock capture
schemes [6,7,26] and flux limiters [10,14,17] have been the meth-
ods to control the unphysical numerical oscillations. The advance
and the retreat of waters on dry land have been attempted with
some success using the wet-and-dry threshold [13,15], the wet cell
mapping [9], the artificial porosity techniques [27], the volume-of-
fluid method [8,11], the Lagrangian–Eulerian algorithms [1,2,12],
and the technique of the artificial viscosity [28,18].

As an alternative to the classical methods, a Lagrangian block
advection (LBA) method has been developed by Tan and Chu
[22,21] for one-dimensional simulations of water waves in shallow
water. In the LBA simulations, the mass and momentum in the
water waves are transferred by the Lagrangian advection of the
blocks. The LBA method always gives positive water depth. It

correctly captures the depth-and-velocity discontinuities while
maintaining absolute computational stability. The method has
since been applied to a number of one-dimensional (1D) water
engineering problems. These include the dam-break waves [21],
the collapsing bore [22,19,16], the runup and overtopping of soli-
tary waves [23] and the runup and overtopping of the regular
waves [24].

This paper will show how the LBA method is generalized for
application to two-dimensional (2D) problems. A couple of 2D ana-
lytical solutions involving flow discontinuities is used as the
benchmarks. The first of the 2D benchmarks is the solution for
water waves in a parabolic bowl by Thacker [25]. The second of
the 2D benchmarks is the solution for the shock waves by Stoker
[20]. The 2D LBA simulations for these benchmark problems are
carried out using progressively smaller block sizes. The conver-
gence is verified by the comparison of the simulations with the
analytical solutions. Finally, the versatility of 2D LBA method for
engineering application is demonstrated by routing flood waves
in a meandering river.

2. Lagrangian block advection

The Lagrangian blocks as the computational elements are
defined by the dimensions of the blocks DxL and DyL and the con-
tents such as volume and momentum in the blocks. Three separate
systems of blocks for the volume, hL

i;jDxLDyL; x-momentums,
uL

i;j
�h

u
i;jDxLDyL and y-momentum vL

i;j
�h

v
i;jDxLDyL, are employed for the

LBA simulations on a staggered grid. The superscript ‘L’
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distinguishes the Lagrangian variables from the Eulerian variables.
Fig. 1 shows (a) the staggered grid, (b) the volume block, (c) the x-
momentum block, and (d) the y-momentum block. As shown in (b–
d) of the figure, the blocks initially occupy the same area as the
Eulerian cell at the beginning of time step. The contents in the
blocks move with the blocks as the blocks are displaced and de-
formed with the flow. The transfer of the block’s contents to its
neighboring cells is completed when the old blocks are break up
along the grid lines and the new blocks are formed at the end of
the Lagrangian advection time step.

Fig. 1b delineates the Lagrangian advection of the volume block.
At the beginning of the Lagrangian advection at time t, the edges of
the blocks match the Eulerian mesh, i.e.,

xL
i;jðtÞ ¼ xi;jðtÞ; yL

i;jðtÞ ¼ yi;jðtÞ: ð1Þ

At the end of the advection at time t + Dt,

xL
i;jðt þ DtÞ ¼ xi;jðtÞ þ

Z Dt

o

Z t

o
axL

i;j dt0dt; ð2Þ

yL
i;jðt þ DtÞ ¼ yi;jðtÞ þ

Z Dt

o

Z t

o
ayL

i;j dt0dt: ð3Þ

For the waves in shallow-waters, the pressure over the depth may
be assumed hydrostatic. The x- and y-components of the depth-
averaged flow accelerations are given by the shallow-water equa-
tions as follows:

axL
i;j ¼

DuL
i;j

Dt
¼ �g

fL
i;j � fL

i�1;j

Dx
þ f x

i;j; ð4Þ

ayL
i;j ¼

DvL
i;j

Dt
¼ �g

fL
i;j � fL

i;j�1

Dy
þ f y

i;j; ð5Þ

where D/Dt = Lagrangian time-differentiation operator, uL
i;j;vL

i;j

� �
¼

x- and y-components of the flow velocity, fL
i;j ¼ hL

i;j þ zo
i;j = water

surface elevation, hL
i;j = water depth, zo

i;j = channel bottom elevation,

g = gravity, and f x
i;j; f

y
i;j

� �
¼ x- and y-components of the other forces

such as the friction force. The integrations for the edge co-ordinates
of the block, xL

i;j; y
L
i;j

� �
, are carried out using the approximation that

the accelerations axL
i;j ; a

yL
i;j

� �
are constant throughout the period of

the Lagrangian advection from time t to t + Dt.
Fig. 2 shows how the area of the (i,j)-block is displaced-and-

deformed from DxDy to DxLD yL due the Lagrangian advection.
The block occupies initially the same area as the Eulerian cell.
The displaced-and-deformed block may occupy an area covering
as much as eight neighboring cells as shown. The displaced-
and-deformed block is divided along the grid lines into portions
and then re-distributed onto the Eulerian mesh to form new blocks
at the end of the advection step. A block re-distribution algorithm
had been developed to (i) subdivide the old block along the grid
lines, (ii) re-distribute the block’s content onto its neighboring
cells, and (iii) re-construct the new blocks at every time increment.
Using the block re-distribution algorithm, the contents in the block
are transported across the grid lines from the cell to its neighboring
cells. The computational time step must not be too large to cause
advection beyond its neighbors. The block re-distribution
algorithm was developed by Chu and Altai [4,5] based on a
requirement that the displaced-and-deformed block boundary
stays within the immediate neighboring cells. This requirement
gives a necessary condition for the computational stability. Over
the period of one Dt, the displacements of all block boundaries
Maxjui,jjDt and Maxjvi,jjDt must not exceed Dx and Dy in the
x- and y-directions, respectively. Therefore, The Courant numbers
Cox and Coy must kept below the value of unity during the
computation as follows:

Cox ¼
Maxjui;jjDt

Dx
< 1; ð6Þ

Coy ¼
Maxjv i;jjDt

Dy
< 1: ð7Þ

These necessary conditions for stability would keep the time step
Dt sufficiently small so that the deformation in one advection step
would not be excessive to cause Lagrangian entanglement. The area
of the block DxL

i;jDyL
i;j may become negative after the Lagrangian

advection if the edge on one side of the block overtakes the other
side from behind.

The third necessary condition for the computational stability is
the Courant–Friedrichs–Lewy (CFL) condition for the shallow-
water waves:

Coc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gMax½hi;j�

p
Dt

Dx
< 1; ð8Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gMax½hi;j�

p
is the wave speed of the shallow-water waves.

The time step must be selected to meet all three necessary condi-
tions as given by the formula:

Dt ¼Min
Dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gMax½hi;j�
p ;

Dx
Maxjui;jj

;
Dy

Maxjv i;jj

( )
Co: ð9Þ

According to this formula, the time step Dt is proportional to the
Courant number Co. The necessary condition for computational sta-
bility is Co < 1.

As the stability, the accuracy of the Lagrangian advection also
depends on the time step size and Co. Since the value of Co = 0.2
was used in most of the computations carried out using the classi-
cal finite-volume (CFV) method, the same value Co = 0.2 is selected
for the present series of LBA simulations. With this selection, the
results of the present LBA simulations are comparable with the
results obtained using the CFV method.
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Fig. 1. (a) The staggered grid, (b) the volume blocks, (c) the x-momentum blocks,
and (d) the y-momentum blocks. The solid rectangles show the blocks before the
Lagrangian advection. The dashed rectangles delineate the edges of the blocks after
the Lagrangian advection.
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