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a b s t r a c t

A higher-order numerical technique is presented for the direct sensitivity analysis of the shallow water
equations with passive scalar transport. The continuous sensitivity equations are modified to account for
the possible presence of shocks in the solution, that result in Dirac source terms for the sensitivity across
flow discontinuities. Higher-order accuracy is achieved via a MUSCL reconstruction technique with slope
limiting, which makes the numerical solution Total Variation Diminishing (TVD). The Harten–Lax–Van
Leer (HLL) approximate Riemann solver is modified so as to account for the influence of source terms
in both the flow and sensitivity solutions. Several options are tested for the wave speed estimates and
the order of the MUSCL time stepping, such as the MUSCL-Hancock, MUSCL-EVR and MUSCL-HLLG tech-
niques. Convergence analyses on continuous and discontinuous flow problems with analytical solutions
indicate that first-order time stepping is approximately twice as fast as second-order time stepping and
that it yields more accurate sensitivity solutions.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Sensitivity equations for flow problems and optimization have
gained attention over the past years. The applications of sensitivity
analysis include local and global sensitivity, uncertainty analysis of
model response, as well as reliability analysis [4,11,13,26,34], in-
verse modeling [8], optimization, design and control [16,25,35].
Several approaches to sensitivity modeling are available. The direct
(or forward) sensitivity approach is mainly used when the sensitiv-
ity of several variables to a few parameters is to be investigated,
while the adjoint (or backward) sensitivity approach is advised
when the purpose is to investigate the influence of numerous
parameters on a limited set of variables [4]. Calculation methods
include continuous and discrete approaches. In the continuous ap-
proach, the set of sensitivity equations are obtained by differenti-
ating the governing flow equations with respect to the
parameters of interest. The sensitivity equations are then solved
numerically (see e.g. [9,15,18–21,23,24,29,35,36]). In the discrete
approach, the governing flow equations are first solved numeri-
cally, then differentiated with respect to the parameter of interest
to provide a discrete sensitivity solution. Examples of such meth-
ods are complex differentiation [30], code differentiation [14],

and finite difference evaluation of the sensitivity [27], also called
empirical sensitivity calculation.

In the field of free surface flow modeling, the sensitivity ap-
proach has been applied in the form of adjoint approaches
[13,36,35] and direct approaches [9,15,20,23], mostly in the form
of continuos methods. Most existing applications to date are valid
for continuous flow solutions only, because discontinuous flow
solutions make the derivatives locally meaningless. As shown in
[2,25], Dirac source terms appear across discontinuities. Such
terms are not accounted for in classical sensitivity calculation tech-
niques and the sensitivity solution may become unstable when
computed numerically. In [2], the sensitivity equations are refor-
mulated in the framework of the theory of distributions and the
Rankin–Hugoniot (jump) relationships are presented for the sensi-
tivity. Such relationships are much more complex than the jump
relationships for the flow variables and their discretization poses
a number of issues, as shown in this paper.

So far, the numerical techniques presented for the shallow
water sensitivity equations in the presence of discontinuous solu-
tions are based on first-order finite volume approaches
[9,23,20,21,10] and have been applied to flows over smooth topog-
raphies. The purpose of the present paper is (i) to propose a num-
ber of MUSCL-based, finite volume methods for direct sensitivity
computation for the shallow water equations, (ii) to assess the
computational efficiency and accuracy of the various approaches,
(iii) to present an improvement over the method initially proposed
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in [10] for source term discretization, and (iv) to assess the influ-
ence of classical wave speed estimates used in the Riemann solver
on the accuracy of the solution.

The paper is organized as follows. In Section 2, the governing
flow and sensitivity equations are presented, as well as an over-
view of the finite volume discretization. Section 3 focuses on the
Riemann solver used to compute the fluxes and source terms for
both the hydrodynamic and sensitivity variables. Section 4 pre-
sents the MUSCL-based schemes used. In Section 5, the various
numerical approaches are applied to various test cases and conver-
gence analyses are carried out. Section 6 is devoted to concluding
remarks.

2. Governing equations and finite volume discretization

2.1. The shallow water equations

The one-dimensional shallow water equations with passive sca-
lar transport can be written in conservation form as

@U
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þ @F
@x
¼ S ð1Þ

where t and x are respectively the time and space coordinates, and
the conserved hydrodynamic variable U, the flux F and the source
term S are defined as
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where g is the gravitational acceleration, h is the water depth, m is
the amount of the variable v per unit length, q is the unit discharge,
S0 and Sf are respectively the bottom and friction slope, u is the flow
velocity and v is the advected variable. For example, if the variable v
is a solute concentration, m is the solute mass per unit length and
width of channel. S0 and Sf are defined as

S0 ¼ �
@zb

@x
ð3aÞ

Sf ¼ n2
Mujujh�4=3 ð3bÞ

where nM is Manning’s friction coefficient. Eq. (1) can also be writ-
ten in non-conservation form as
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where A is the Jacobian matrix of F with respect to U:

A ¼
0 1 0
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with c = (gh)1/2 the speed of the waves in still water. The eigen-
values of A are

kð1Þ ¼ u� c ð6aÞ
kð2Þ ¼ u ð6bÞ
kð3Þ ¼ uþ c ð6cÞ

and the matrix of eigenvectors of A is

K ¼
1 0 1

kð1Þ 0 kð3Þ

v 1 v

264
375 ð7Þ

The purpose is to solve Eq. (1) over a domain [0, L] of space for
times t > 0. The problem is well-posed, that is, the existence and
uniqueness of the solution of Eq. (1) is guaranteed, provided that

the initial condition U(x, t) is known for all x 2 [0, L] at time t = 0,
and that as many boundary conditions are prescribed as there
are characteristics dx

dt ¼ kðpÞ ðp ¼ 1;2;3Þ entering the domain [6].
Such initial and boundary conditions are written in the form

Uðx;0Þ ¼ U0ðxÞ 8x 2 ½0; L� ð8aÞ
fðUð0; tÞÞ ¼ fb;0ðtÞ 8t > 0 ð8bÞ
fðUðL; tÞÞ ¼ fb;LðtÞ 8t > 0 ð8cÞ

where U0(x), fb,0(t) and fb,L(t) are known functions for the initial and
boundary conditions.

2.2. Derivation of the sensitivity equations for continuous solutions

In the conservation and non-conservation forms (1) and (4), the
flux F and the source term S are functions of a number of parame-
ters such as the gravitaional acceleration g, the bottom slope S0 and
the friction coefficient nM. Besides, the solution U at a given (x, t) is
a function of the initial and boundary conditions, that may also be
considered as parameters of the problem. Therefore, in Eq. (1),
F = F(U, u) and S = S(U, u). A sensitivity analysis consists in study-
ing the variations in U triggered by a variation in the parameter u.
The sensitivity can be seen as the partial derivative of U with re-
spect to the perturbation amplitude u0. It is presented in [4] as a
Gateaux differential, that is, a directional derivative.

The shallow water sensitivity equations are derived by assum-
ing an infinitesimal perturbation du in the parameter u:

duðx; tÞ ¼ u0 eðx; tÞ ð9Þ

where u0 is the amplitude (assumed infinitesimal) of the perturba-
tion and e(x, t) is the so-called support function of the perturbation.
e = 0 in the regions of the solution domain where u is not to be per-
turbed, and takes non-zero values at points where u is assumed to
be subjected to a perturbation. Perturbing the parameter u by du
induces a perturbation dU in U over the solution domain. The sen-
sitivity s of U with respect to u is defined as the limit ratio

s � lim
u0!0

dU
u0

ð10Þ

The governing equations for the sensitivity s are obtained by
writing that the perturbed solution U + dU also verifies Eq. (1):

@ðUþ dUÞ
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Under the assumption of an infinitesimal perturbation, one has
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Substituting Eqs. (12a) and (12b) into Eq. (11), subtracting Eq.
(1) and dividing by u0 leads to

@s
@t
þ @G
@x
¼ Q ð13Þ

where the sensitivity flux G and the sensitivity source term Q are
defined as

G ¼ As ð14aÞ

Q ¼ @S
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e
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ð14bÞ

In this paper, the parameters under consideration for the sensi-
tivity analysis are initial conditions, as well as the geometric
parameter involved in the source term S, that is, the bottom eleva-
tion zb. The gravitational acceleration is not considered for analysis
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