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a b s t r a c t

Proper orthogonal decomposition is used to educe fundamental velocity and temperature coherent struc-
tures in the fully confined cubical three-dimensional differentially heated cavity (DHC) flow. Among
other linear decompositions, the POD is optimal in the sense that it provides a set of modes that captures
the largest amount of energy contained in the snapshot ensemble. We present here preliminary results of
the first empirical eigenfunctions that account up to 95% of the total energy of the ensemble. The database
is made of 200 snapshots obtained by means of Direct Numerical Simulation (DNS) at Rayleigh Ra = 109.
The results are in good agreement with previous observations of coherent structures identified with k2

criterion, confirming the importance of the elongated spanwise structures (located downstream the
break up of the laminar vertical boundary layers) for the description/modeling of the turbulent heat flux.
The basis functions that account for the largest part of the turbulent heat flux are not made of the most
energetic POD empirical eigenfunctions. In appears that the spatial structures which contain the largest
fraction of the turbulent heat transfer correspond to the POD modes characterized by the presence of
spanwise elongated vortices at the vertical active walls where temperature and velocity eigenfunctions
are spatially strongly correlated.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The identification of coherent structures in complex flows is of
primary importance for understanding the underlying physics and
for simplifying their dynamics. Among other identification meth-
ods, for instance conditional averaging, k2 criterion [1], or coherent
vortex extraction (CVE) [2], the proper orthogonal decomposition
(POD) [3] is a linear decomposition technique which provides a
set of optimal spatial empirical eigenfunctions that are orthonor-
mal (for a comparison between CVE and POD we refer to [4,5]). It
captures the largest possible amount of energy (the concept of en-
ergy will be defined hereafter) for any given number of modes.
These intrinsic features of the POD allow to get not only insight
of the different fluid structures appearing in a collection of events,
but also to sort them accordingly to their averaged energetic con-
tent when the eigenfunctions are projected on the original data-
base. Finally, the empirical eigenfunctions can be used for
simulating the interaction between themselves, i.e. the dynamics
of the chaotic system, by performing Galerkin projection of the Na-
vier–Stokes equations on the spatial structures. The latter is a pow-
erful tool for flow control or instability analysis.

Natural convective flows are present not only in nature but also
in several different industrial applications (e.g. chemical and nucle-
ar reactors, building air conditioning, electronic cooling systems,
etc.). Previous investigations of natural convective flows using
POD can be found in [6–8]. These studies analyse the classical
Rayleigh–Bénard problem. To the authors’ knowledge, the only
works dealing with POD in the differentially heated cavity flows
in two-dimensional tall cavities may be found in [9,10] and in [11]
for the three-dimensional case at very low Prandtl numbers. More-
over, only few published results focused on the three-dimensional
fully confined supercritical flows in this configuration [12–14].

This work will present preliminary results of velocity and tem-
perature empirical eigenfunctions of fully three-dimensional dif-
ferentially heated cavity flow at Rayleigh number Ra = 109, the
study of low-dimensional dynamical model will be the object of fu-
ture investigations. In order to decrease the computational costs,
Sirovich’ snapshot method [15] is used on an ensemble of 200 sta-
tistically steady frames. Only the most energetic modes that ac-
count up to the 95% of the ensemble averaged fluctuating energy
are retained. Results are in good agreement with previous observa-
tion of velocity coherent structures [12,16]. Furthermore, the com-
bination of velocity and temperature modes will be investigated
for modeling the turbulent heat flux.

The article is organized as follows: a brief description of the
numerical method used for creating the DNS database is provided
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in Section 2; some fundamental aspects of the POD technique are
given in Section 3; Section 4 reports the results of the empirical
eigenfunctions for velocity and temperature, including the POD
spectra, the cumulative energy distributions, modeling and
physical interpretation of turbulent heat flux coherent structures;
the last Section 5 is devoted to the concluding remarks and
perspectives.

2. Direct numerical simulation

We consider the flow of air in a cubical cavity of edge-length H,
open domain X̂ ¼ ð� � 0:5H; þ0:5H½Þ3 and @X̂ its boundary (Fig. 1).
This flow is driven by the local differences of fluid density caused
by the application of a temperature gradient between two opposite
vertical walls: the hot wall is kept at a constant temperature TH and
the cold wall at TC, whilst all the remaining walls are adiabatic. The
temperature DT = TH � TC is supposed to be sufficiently small for
the Boussinesq approximation to hold. Moreover the fluid is as-
sumed homogeneous, incompressible, Newtonian with constant
kinematic viscosity mr, constant thermal diffusivity jr and volumet-
ric thermal expansion coefficient ar ¼ �1=qð@qr=@TÞpr

¼ 1=Tr (the
subscript r indexes quantities that are measured at the reference
mean temperature Tr ¼ THþTC

2 ). Under these hypotheses momen-
tum, mass and energy conservation read in dimensionless vector
form as:

@u
@t
þ u � ru ¼ �rpþ Prffiffiffiffiffiffi

Ra
p Du� PrH

g
jgj in X; ð1Þ

r � u ¼ 0 in X; ð2Þ
@H
@t
þ u � rH ¼ 1ffiffiffiffiffiffi

Ra
p DH in X; ð3Þ

with boundary conditions1

u ¼ 0 on @X; ð4Þ
Hðx1 ¼ �0:5; x2; x3Þ ¼ �0:5 for all x2; x3 2 ½�0:5;þ0:5�; ð5Þ

and

@H
@x2
ðx1; x2 ¼ �0:5; x3Þ ¼ 0 for all x1; x3 2 ½�0:5;þ0:5�; ð6Þ

@H
@x3
ðx1; x2; x3 ¼ �0:5Þ ¼ 0 for all x2; x3 2 ½�0:5;þ0:5� ð7Þ

where the following scaling for the velocity, length, time and pres-
sure are used [16–18]

U� ¼ jr

H

ffiffiffiffiffiffi
Ra
p

; L� ¼ H; t� ¼ H2

jr

ffiffiffiffiffiffi
Ra
p ; P� ¼ qrU

�2
: ð8Þ

The dimensionless unknowns are the velocity vector
u � (u1,u2,u3), p the pressure and H ¼ T�Tr

DT the temperature differ-
ence. There are only two governing parameters, the Prandtl num-
ber Pr = mr/jr = 0.71 (for air) and the Rayleigh number Ra = garD
TH3/(mrjr) set to 109.

The spatial approximation of any field relies on the expansion in
tensor product of Chebyshev polynomials of order M = 169 along
every space direction and an usual collocation method is applied
at the Chebyshev–Gauss–Lobatto points [19,20]. The projection–
diffusion method is chosen for its consistency with the continuous
space–time problem and for its optimal cost. A complete numerical
analysis of this decoupling method may be found in [21,22].

The time discretization is based on a second order backward Eu-
ler differentiation formula. The diffusive terms are treated implic-
itly whereas the advection terms are advanced explicitly in time by

a second-order extrapolation scheme. The time discretized equa-
tions can be recast in a vectorial Helmholtz system of equations
for the velocity, a quasi-Poisson operator for the pressure, and a
scalar Helmholtz equation for temperature to solve at each time
step, noting that the box geometry allows to use fast diagonalisa-
tion method for inverting these elliptic operators at a low compu-
tational cost [23]. The time-step is constant and set equal to
Dt = 5 	 10�3. More details on the DNS database can be found in
[12].

3. Proper orthogonal decomposition

This section aims to provide the mathematical grounds on
which the POD method is based (for an exhaustive and detailed
discussion we refer to [24–27]).

In the present context the POD is used for the identification of
turbulent coherent structures of velocity, temperature and heat
flux fields. It relies on a linear decomposition of a general vector
field with zero mean / = /(x, t), / 2 L2(X), with respect to orthog-
onal modes (also called empirical eigenfunctions) fj = fj(x) [15]

/ðx; tÞ 
 /Nðx; tÞ ¼
XN

j¼1

ajðtÞfjðxÞ; ð9Þ

where N is the series truncation order. Given an ensemble of S real-
izations of the vector fields /i ¼ /ðx; tiÞ; E ¼ f/igS

i¼1, we define the
correlation tensor R of dimension S 	 S

Rjk ¼
1
S

Z
X

/j � /kdV ¼ 1
S
ð/j;/kÞ: ð10Þ

It can be shown [26] that solving the eigenvalue problem

Rqj ¼ kjqj ð11Þ

is equivalent to solve the maximization problem maxh(/,f)2i/
(f,f) = k, where h�i is the time-averaging operator. Finally, the
empirical eigenfunctions are computed as follows:

fj ¼
XS

i¼1

qi
j/

i ð12Þ

in such a way that (fj,fk) = djk, being djk the Kronecker delta. Since R
is symmetric and semi-positive defined its eigenvalues are all non-
negative. We notice that the trace of the correlation tensor
trðRÞ ¼ hð/; /Þi ¼

PS
j¼1kj represents the averaged energy content of

the fluctuating vector field analysed. In natural convective flows
(as well as in compressible flows or magneto hydrodynamics) two
possible definitions of the state vector /i can be considered. The first

Fig. 1. Schematic view of the cubic domain and boundary conditions.

1 The initial velocity and temperature distribution are instantaneous solutions
obtained by previous computations at lower Rayleigh.
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