Computers & Fluids 52 (2011) 22-32

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier.com/locate/compfluid

A fast tensor-product solver for incompressible fluid flow in partially
deformed three-dimensional domains: Parallel implementation

Arne Morten Kvarving, Einar M. Renquist *

Norwegian University of Science and Technology, Department of Mathematical Sciences, Trondheim, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 27 September 2010
Received in revised form 20 May 2011
Accepted 9 August 2011

Available online 30 August 2011

Keywords:
Tensor-product solver
Shared memory
Distributed memory
Bénard-Marangoni

decomposition.

We describe a parallel implementation of the tensor-product solver derived in Refs. [6,19]. A combined
distributed/shared memory model is chosen, since the flexibility allows us to map the algorithm better
to the available resources. Since the approach requires special attention to load balancing, we also pro-
pose a scheme that resolves the challenges involved. Speedup results from test problems, as well as from
real simulations, are presented and discussed. While the speedups are not perfect, we show that the new
algorithms are more than competitive with a standard 3D approach parallelized using domain

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Parallelization strategies for finite element codes are usually
based on the domain decomposition paradigm [13,30]. This way
of extracting parallelism has many attractive features, such as
the availability of very efficient solvers, relatively easy implemen-
tation and access to load balanced codes. In principle, all that is re-
quired is a sufficient number of elements compared to the number
of processors, as well as a good division of these elements between
the processors. This gives a coarse grained division of the workload
which maps very well to a distributed memory model where sep-
arate processes communicate through message passing.

In this document we study parallelization strategies for another
class of algorithms, which allows for alternative approaches. These
algorithms are only applicable to a certain class of problems,
namely problems in geometries of the “cylindrical” kind which
can be viewed as an extrusion of some general 2D cross-section
[6,11,19]; see Fig. 1 for an example. Our motivation for considering
this particular class of geometries is that we want to use the code
to simulate surface-tension-driven Bénard-Marangoni convection
in confined containers [5,7,8,17,18,27,29]. This class of algorithms
decompose the elliptic 3D problems into a set of completely decou-
pled 2D problems. The decoupling into several subproblems offers
a new parallelization strategy; instead of having all processors par-
ticipate in the solution of one large problem, we can now divide
them into groups which work independently of each other. In other
words, the parallelization strategy is to a large extent given by the
algorithm. The division of the processors into groups means that

* Corresponding author.
E-mail address: ronquist@math.ntnu.no (E.M. Renquist).

0045-7930/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compfluid.2011.08.007

we have to face additional challenges when it comes to load bal-
ancing, since the different groups may have varying solution times.
Nonetheless, these algorithms are interesting since from experi-
ence [6,19] they reduce the number of floating point operations
needed by close to an order in magnitude and are very conserva-
tive with respect to memory usage. When applicable, they should
reduce the amount of computing resources needed significantly.

In terms of spatial discretization, the focus in this work is on
spectral elements. We remark this does not reflect a limitation of
the algorithms considered. The algorithms can be used with any
spatial discretization, such as low-order finite elements or finite
differences. None of the following discussion relies directly on
the use of spectral elements, thus the parallelization derived
is also applicable with these kinds of spatial discretizations. For
instance, earlier work has been reported where a Fourier expan-
sion in the extrusion direction is combined with an element meth-
od [9,12,16,21]. Our approach can certainly be applied in this case.

The outline of the paper is as follows. In Section 2 the descrip-
tion of the (model) problem considered is given. In Section 3 we
briefly discuss the discretization leading to the linear systems of
equations we have to solve. In Section 4 we give a brief overview
of the tensor-product solvers considered, before moving on to dis-
cuss the parallelization in Section 5. Speedup results are then given
in Section 6. Finally, in Section 7, we summarize our findings and
present our conclusions.

2. Problem definition

As a model problem, we consider the unsteady Stokes equations
in some (extruded) domain Q;

http://dx.doi.org/10.1016/j.compfluid.2011.08.007
mailto:ronquist@math.ntnu.no
http://dx.doi.org/10.1016/j.compfluid.2011.08.007
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid

A.M. Kvarving, E.M. Renquist/Computers & Fluids 52 (2011) 22-32 23

T

(a) cross-section

(b) 3D geometry

Fig. 1. An example of the class of geometries we consider. Here, the cross-section is a hexagon which is extruded in the third direction to form a full 3D container.

a“ —YVu+Vp=f inQ,

V-u:O in Q,

(1)

where u is the velocity, p is the pressure and f represents a given
body force. We assume that appropriate initial and boundary condi-
tions for the velocity are specified. For simplicity, we here assume
that

u=0 onoQ.

The governing equations for incompressible fluid flows are the Na-
vier-Stokes equations. However, since the convection operator is
typically handled using explicit time integrators (following a
semi-implicit approach), this does not give rise to additional elliptic
systems. Thus, the Stokes equations serve us well, since we here
consider the solution of the elliptic systems of equations derived
from an implicit-in-time method in combination with a velocity-
pressure splitting scheme.

3. Discretization

We use high order spectral elements [24] to discretize in space,
specifically the Py/Py_» method [26]. The domain 2 is decom-
posed into K spectral elements, each with polynomial degree N.
These elements are layered in the extrusion direction, thus K can
be expressed in the form K = K - £, where K is the number of spec-
tral elements in each layer, and £ is the total number of layers. We
refer to a specific element wusing two indices:
K,i=1,...,K, j=1,...,L. Here i is the element number within
each layer and j the layer. These elements give rise to a number
of planes, one per degree of freedom in the extrusion direction.
The number of such planes depends on the boundary conditions
considered, as well as N, the polynomial order of the elements.
For the homogenous Dirichlet boundary conditions considered
here, each velocity component will have A'; = LN — 1 planes. Like-
wise, for the pressure we have A, = £(N — 1) planes; this would
be the same no matter which boundary conditions are enforced
on the velocity.

In the following, certain operations will take place across the
entire span of the extrusion direction. We thus introduce a set of

N L
“super-elements”, & = {kj} 1,1’ =1,...,K. Each super-element ¢&;
iz

consists of the composition of £ spectral elements in the extrusion
direction, i.e., we have K such super-elements.

The system of semi-discrete equations corresponding to (1)
(discrete in space and continuous in time) can be expressed as

du T
Bd—+Au—Dp_Bf 2)
Du =0.

Here, A is the discrete viscous operator (vector Laplacian), B the
mass matrix, D and DT represent the discrete divergence and gradi-
ent operator, respectively, while u and p are the unknown, nodal

velocity and pressure values, respectively. Note that we use the
same notation for the velocity, pressure and source in (1) and (2).
In the following the symbols refer to the discrete quantities.

For clarity of presentation we here consider a first order tempo-
ral discretization. We employ a velocity-pressure splitting scheme,
specifically an incremental pressure-correction scheme [10,15,
31,28]. This is done to avoid a costly coupled solution strategy,
as well as the nested iterations associated with a Uzawa decou-
pling [4,23]. These splitting schemes are closely coupled to the
temporal discretization; in particular, they are based on backward
differencing. This means that for a first order realization, we use
the backward Euler method and our fully discrete problem reads

1

H15({1"+1 —u") +AG™' —D'p" = Bf"",
Alt(unﬂ n+l) DT(pn+1 _ pn) — 07 (3)
Dun+1 — O,

resulting in decoupled problems for the velocity and the pressure

Ha™!' = %Bu" +D'p" + Bf", (4)
DB—IDT Apn+l — EAan — _%Dﬁnﬂ' (5)

=E

Here At is the time step, superscript n refers to the quantity evalu-
ated at time t" = nAt, H= A + LB is the discrete Helmholtz opera-
tor, E is the consistent Poisson operator and Ap™!=p™!_p"
After we have solved these equations, the nodal values for the pres-

sure and velocity are updated through

un+1 _ ﬁn+1 -l-Al’Bi]DTAan,

6
pn+1 :pn + Apnﬂ' ()

4. Tensor-product algorithms

The key observation behind the new algorithms is the fact that
the extruded geometries lead to tensor-product forms for the ellip-
tic operators (Helmholtz and consistent Poisson). Specifically, we
have

1

_ B'P 5 B,
At

H= BlD ®AZD +1\1D ®BZD

Here the superscripts 1D and 2D refer to the one-dimensional and
the two-dimensional operators, respectively, i.e., all the geometry
deformations are contained in the operators with the 2D superscript.
Likewise, the consistent pressure operator can be expressed as

E=B"2E” +E"” 2B,

where

Download English Version:

https://daneshyari.com/en/article/762504

Download Persian Version:

https://daneshyari.com/article/762504

Daneshyari.com

https://daneshyari.com/en/article/762504
https://daneshyari.com/article/762504
https://daneshyari.com/

