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In this article a novel auxiliary potential velocity scheme for incompressible flows is presented. The pres-
ent method is characterized by high accuracy, robustness and simple implementation. Its advantages are
highlighted by applying it to several benchmark problems (internal duct flow, flow over a backward fac-
ing step) and by extensive comparison with other numerical methods such as SIMPLE and CVP concern-
ing accuracy and convergence. The accuracy of the predictions of the present method is demonstrated
through comparison with experimental data.
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1. Introduction

In the past decades, several numerical methodologies have been
developed to solve the system of equations that govern incom-
pressible flows. These methodologies can be categorized in several
families depending on characteristics, such as the use of primitive
variables or not and the handling of the velocity—pressure
coupling.

A very broad category includes the methods that use a Poisson
equation for the pressure. Some of the most widely used methods
of the pressure linked family are the SIMPLE method [1] and its
variants SIMPLER [2] and SIMPLEC [3] that employ an iterative pro-
cedure for the velocity-pressure coupling. The common character-
istic of these methods is that the discretized continuity and
momentum equations are combined in order to produce a discrete
Poisson equation for the pressure. The handling, however, of the
discretized equations can become complicated and cumbersome
in flow problems that involve complex geometries. These methods
require a staggered grid for the avoidance of spurious oscillations
in the pressure. Nevertheless, several techniques have been de-
vised that use cell face interpolations and achieve the suppression
of these unphysical oscillations while using collocated grids [4,5].

Another method for incompressible flows is the Continuity-
Vorticity-Pressure (CVP) variational equations method [6-8]. The
CVP method is very efficient and robust, it does not involve a stag-
gered grid and it produces very accurate results. It is based on the
decoupling of the evaluation of the velocity corrections from the
pressure correction. However, it involves the solution of three
additional equations besides the momentum equations for 2D
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problems and four additional equations in the 3D case. In that
sense, it can be computationally demanding when applied to grids
with large numbers of nodes.

Another category of methods for incompressible flows includes
the SMAC method [9] and its variants that use an auxiliary poten-
tial velocity for the determination of the pressure. Several studies
have been published concerning the implementation of the SMAC
method to internal and external flows. A comprehensive review
of the advances and the implementations of the SMAC method
can be found in McKee et al. [10]. Comparisons with other methods
such as SIMPLEC and PISO have shown that for unsteady flows the
SMAC method is more efficient because it needs less computa-
tional effort [11] and that it produces very accurate results, in some
cases more accurate than PISO [12]. SMAC is a very efficient meth-
od which is based on the auxiliary velocity potential. It uses the
fractional step technique, so it is mainly used for transient flows.
However, it can be used to predict steady flows by marching in
time until the solution no longer changes. In this case a time step
is introduced, which is dictated by the stability concern and some-
times it is overly small to be computationally efficient.

Other potential based methods have been used by Briley and
McDonald [13] and Fletcher and Bain [14]. The former, study the
developing flow in a curved square duct and in their method they
separate the velocity in two parts, one for the axial potential flow
and one for the secondary flow. Their approach uses a combination
of viscous and inviscid flow field, which decomposes the numerical
problem by taking into account physical approximations. The po-
tential based method of Fletcher and Bain [14] uses elements from
both SMAC and SIMPLE. It involves corrections for the velocity and
the pressure field and also the use of an auxiliary potential for the
satisfaction of the continuity equation. They use the auxiliary
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potential method for the presentation of an approximate factoriza-
tion explicit method, suitable for solution on parallel CPUs. They
state that the introduction of the auxiliary potential is possible if
the velocity correction is assumed irrotational. However, it will
be shown in this paper that the velocity correction necessary to
satisfy continuity is by definition irrotational and that the auxiliary
potential method has general applicability.

The scope of this paper is to present an accurate, robust and
computationally efficient, auxiliary potential based method. Its
main characteristic is that it uses the auxiliary potential for the
evaluation of the velocity corrections and then the pressure correc-
tion is obtained from the momentum equation. The auxiliary po-
tential was chosen as a means of computing the corrections in
order to achieve easy implementation of the numerical scheme
to complex coordinate systems, without the need to discretize
the governing equations for the construction of a pressure correc-
tion equation. The advantages of the present method are that it can
be easily applied to both steady and unsteady flows and that it can
produce accurate results with very small computational effort and
without a restrictive time step. The new scheme is applied on a cell
vertex with pressure in the center (CVPC) grid, thus avoiding the
complicated staggered grid. The problem of the spurious oscilla-
tions is solved with the use of the CVPC grid without any velocity
or pressure interpolations on the cell faces, which are obligatory on
collocated meshes, and additionally there is no need for boundary
conditions for the pressure. The present method is applied to sev-
eral benchmark problems and it is compared with experimental
data and with other numerical methods such as SIMPLE and CVP
for accuracy and computational efficiency.

2. Numerical method

In order to outline the steps of the computational procedure we
consider the general case of three-dimensional incompressible
flow. We express the governing equations in terms of the non-
dimensional variables

v p /
V= p=——,V=DyV 1
V/Dh/p pvz/Dz h ( )

where v/, p/, p, v, Dy, are the dimensional velocity, pressure, density,
kinematic viscosity and hydraulic diameter respectively. The gov-
erning equations are the continuity and momentum equations.
We shall describe the present scheme for the steady state case.
Thus, the time derivative will be omitted. The extension of the
scheme to transient flows is straightforward, if the time derivative
is retained in the momentum equation.

Using the lagging of the coefficient technique to linearize the
momentum equation, the governing equations at the n+1 itera-
tion become

V.l =0 )

(vn . V)vnﬂ _ 7Vpn+l + v2vn+l (3)

The implementation of the method begins with the distribution
of the pressure and the velocity field at the nth iteration, which we
denote by p" and v" respectively. The momentum equation can
therefore be solved to give an estimation of the velocity field which
is denoted by v*.

(V" V)vt = —Vp" 4 Vv (4)

The estimated velocity field v* does not in general satisfy the
continuity equation. Hence, we introduce the velocity correction
ov and the pressure correction Jp, which are defined by the
relations

prl=p"+op (5

Substituting the relations (5) in Eq. (2) we obtain the following
equation for the velocity correction

V-ov=G where G=-V.v* (6)

Vil = v 4 Gy,

where the term G depends only on v* and it can be easily evaluated.
At this point we introduce the scalar potential correction 5¢ and the
vector potential correction &, which are defined by the relation

oV =V5p+Vxdy )

It is noted that the velocity correction, as any vector, can be
written as the sum of two terms dv = év;; + dvg,, One irrotational
for which V x év;; =0 and hence év;; = Vé¢ and one solenoidal
for which Vévy, =0 and hence év,, =V x . Eq. (6) then
becomes

V.oV =V (Vi + 0vs)) = V250 + V-V x 8y = V250 (8)

Hence, combining Eq. (6) with Eq. (8) we obtain the auxiliary
potential correction equation

V2 =G. (9)

Under this consideration, one may take the velocity correction that
is necessary to satisfy continuity to be an irrotational vector év = 6v;;
without violation of the nature of the flow and of the actual veloc-
ity. This is due to the fact that the velocity correction is introduced
in order to impose the mass conservation condition to the solution
and not to correct the velocity in general. The solenoidal component
of the velocity correction cannot be affected by the continuity equa-
tion (which expresses mass conservation) and thus it can be ig-
nored. This leads to

ov =Vip (10)

Thus, after solving the auxiliary potential correction Eq. (9) we
compute the velocity correction from Eq. (10).

The boundary conditions for ¢ can be obtained in two ways.
The exact velocity or velocity gradient is known on the boundaries
so the velocity correction is zero. Hence:

(@) 6v- N =Vsp -n=0 (n is the unit normal vector on the
boundary) gives the Neumann boundary condition
06¢p/on = 0.

(b) év-€=Vsp-e =0 (e is the unit tangential vector on the
boundary) gives the condition d5¢p/de = 0 . Supposing that
at an arbitrary point of the boundary the potential correction
d¢ assumes a value d¢ = c (which may be easily set to zero
c=0)itis obtained from d6¢/de = 0 that 6¢ = c (or d¢p = 0)
on the whole boundary. This gives a Dirichlet boundary
condition.

Moreover, in the case of open boundaries, the conditions are
subject to the global constraint

/ag—r(lpds:/(Szé(pdA:/GdA (11)

where C is the boundary of the computational domain S.

Eq. (9) can be solved to give the potential correction é¢ using
either one of the boundary conditions. However, numerical exper-
iments with the present scheme showed that the Dirichlet bound-
ary condition leads to faster convergence.

After the determination of the velocity correction field, the
pressure correction needs to be computed. According to the pres-
ent methodology, we must first express the convection terms of
the momentum equation according to the vector identity
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