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ABSTRACT

Expensive to compute wall distances are used in key turbulence models and also for the modeling of
peripheral physics. A potentially economical, robust, readily parallel processed, accuracy improving, dif-
ferential equation based distance algorithm is described. It is hybrid, partly utilising an approximate Pois-
son equation. This also allows auxiliary front propagation direction/velocity information to be estimated,
effectively giving wall normals. The Poisson normal can be used fully, in an approximate solution of the
eikonal equation (the exact differential equation for wall distance). Alternatively, a weighted fraction of
this Poisson front direction (effectively, front velocity, in terms of the eikonal equation input) information
and that implied by the eikonal equation can be used. Either results in a hybrid Poisson-eikonal wall dis-
tance algorithm. To improve compatibility of wall distance functions with turbulence physics a Laplacian
is added to the eikonal equation. This gives what is termed a Hamilton-Jacobi equation. This hybrid Pois-
son-Hamilton-Jacobi approach is found to be robust on poor quality grids. The robustness largely results
from the elliptic background presence of the Poisson equation. This elliptic component prevents fronts
propagated from solid surfaces, by the hyperbolic eikonal equation element, reflecting off zones of rapidly
changing grid density. Where this reflection (due to poor grid quality) is extreme, the transition of front
velocity information from the Poisson to Hamilton-Jacobi equation can be done more gradually. Consis-
tent with turbulence modeling physics, under user control, the hybrid equation can overestimate the dis-
tance function strongly around convex surfaces and underestimate it around concave. If the former trait
is not desired the current approach is amenable to zonalisation. With this, the Poisson element is auto-
matically removed around convex geometry zones.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Wall distances, d, are still a key parameter in many key turbu-
lence models (see Baldwin and Lomax [1], Baldwin and Barth [2],
Spalart and Allmaras [3], Wolfshtein [4], Secundov et al. [5], Men-
ter [6] and Spalding [7]) and also Detached Eddy Simulations (see
Shur et al. [8], Nikitin et al. [9]). They are also used for peripheral
applications incorporating additional solution physics and aspects
of geometric modelling (see Xia et al. [10]). For turbulence models,
d is just required close to walls to a maximum of about one third of
the boundary layer thickness. Surprisingly, for highly optimised
RANS/URANS (Unsteady Reynolds Averaged Navier-Stokes) solv-
ers, the effort in calculating d can be a significant fraction of the
total solution time. For example, even with a Cray C90 class com-
puter it took 3 h just to gain d (see Wigton [11]). For flows with
time dependent geometry (such as Computational Aeroelasticity
and design optimisation) or mesh refinement clearly this feature
is exacerbated (see Boger [12]). Because of d evaluation expense
in some codes dangerous approximations are made (see Spalart
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[13]). These can, for example, create large inaccuracies and also
non-smooth, unhelpful to convergence, d distributions.

However, the careful modification of d to some d can remedy
turbulence model deficiencies or extend modelling potential. For
example, in the SA [3] and v,9; (Secundov et al. [5]) models rough-
ness can be accounted for by distance modification. Also, if d = d
sharp convex features, such as a thin wire, or wing trailing edge,
can have disproportionate turbulence influences (see Fares and
Schroder [14]). For a thin wire in a channel the anomalous situa-
tion arises where in the wall normal direction the wire (no matter
how small) has just as strong a turbulence damping influence as
the channel walls. Through boosting turbulence destruction terms,
wall proximity reduces eddy viscosity. Hence, the excessive influ-
ence of sharp convex features can be lessened by ensuring d > d.
For corners or bodies/surfaces in close proximity the increased
multiple surface turbulence damping effect (see Spalding [7], Fares
and Schroder [14], Mompean et al. [15], Launder, Reece and Rodi
[16]) should be taken into account. Setting d < d is a convenient
mechanism for achieving this.

Distance evaluation methods can be broadly classified as: (I)
search procedures, (II) integral approaches and (III) differential
equation based methods. Crude search procedures require O(n,ny)
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Fig. 1. Schematic of cell vertex control volume.

operations where ng and n, correspond to the number of surface
and internal node points. Wigton [11] and Boger [12] present more
efficient search procedures. These need O(n,\/f;) and O(n, log n;)
operations, respectively. Integral approaches are described in Bo-
ger [12], Spalart [17] and Launder et al. [16]. For complex geome-
tries they are difficult to apply and make numerically efficient.
Hence, the focus here is on a differential equation based method.
Advantageously, such methods are suitable for vector and parallel
computers. Some, differential equation methods are discussed
below.

2. Differential equation based distance methods and new
hybrid approach

2.1. Poisson equation method

Considering the above noted accuracy, or physics, consider-
ations Spalding [7] proposed solving a Poisson differential equation
for a wall distance related function ¢. This equation is given below

Vi =-1 1)

_ The variable ¢ can be converted into a wall distance function,
dp, through the auxiliary equation below
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The analytical derivation of (2) includes the assumption that
surfaces are extensive in the non wall normal direction. Egs. (1)
and (2) have all the desirable traits, noted above i.e. for a single flat
surface dp = d, in a convex geometry region dp > d and in a concave
region dp < d.

2.2. Eikonal equation method

Fares and Schroder [14] also derived a differential equation for
d. This again is aimed at reflecting the traits of Egs. (1) and (2).
However, an exact equation for d, that can be readily derived using
coordinate geometry is the hyperbolic eikonal equation below

|Vd| =1+ I'V*d (3)

where I' —» 0 giving viscosity solutions. This equation models a
front propagating at unit velocity, u, from surfaces. In fact, d is
the first arrival time of the front. For a unit velocity this time is
equivalent to wall distance. If I" = f{d), the front velocity is modified
and the resulting Hamilton-Jacobi (HJ) equation will give the traits
of Egs. (1), (2) above (see Tucker et al. [18]. Tucker [19]) but with
the potential of user control. Motivated by dimensional homogene-
ity and the need that as d — 0, the Hamilton-Jacobi (H]) distance
function should ensure ZiHJ = d suggests

I =édy )

where ¢ is a constant (Note, in later results 0 < € < 0.5. Finite values
of & can improve stability, but for triangulated meshes the parame-
ter is found of minimal benefit in this respect. However, for hexahe-
dral cells, with rapid volume changes away from solid surfaces, as
will be addressed later, the & level can be useful for securing itera-
tive convergence). Here, it is proposed to hybridize Egs. (1)-(3) cre-
ating a Poisson-Hamilton-Jacobi distance function model.

2.3. Hybrid method

If we define the pseudo velocity (which represents a front prop-
agation velocity) shown below

iy = Vdy (5)
the HJ equation can be re-expressed as
ﬁvaaH] =1+ é&H]VZaH] (6)
We can alternatively define a hybrid auxiliary velocity
_ - d
iy = aVdy + (1 - a)’v—f"
P

)

to compute a hybrid wall distance function dy For o.=1, the HJ
equation is recovered. For o <1 a hybrid solution that contains
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Fig. 2. HJ distance contours and grid for flat plate: (a) two-dimensional view and
three-dimensional plot with vertical axis as d.
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