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a b s t r a c t

In this paper, a meshfree point collocation method, with an upwinding scheme, is presented to obtain the
numerical solutions of the coupled equations in velocity and magnetic field for the fully developed mag-
netohydrodynamic (MHD) flow through an insulated straight duct of rectangular section. The moving
least-square (MLS) approximation is employed to construct the shape functions in conjunction with
the framework of the point collocation method. Computations have been carried out for different applied
magnetic field orientations and a wide range of values of Hartmann number from 5 to 106. As the adap-
tive upwinding local support domain is introduced in the meshless point collocation method, numerical
results show that the method may compute MHD problems not only at low and moderate values but also
at high values of the Hartmann number with high accuracy and good convergence.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The magnetohydrodynamic (MHD) flow is of great interest for
many researchers due to its applications in broad fields, such as
the cooling system with liquid metals for nuclear fission or fusion
reactors, electromagnetic pumps, MHD generators. It is very
important to devise effective numerical methods to obtain the
approximate solutions of the MHD flow problem since the exact
solutions can be achieved only in some special cases.

Several methods for solving the MHD problems numerically in
two-dimensional case have been applied; however, most of them
can only solve MHD problems at low or moderate Hartmann num-
bers. Finite element method (FEM) is one of the most popular
methods for solving the MHD problems [1–4]. For FEM, most of
these simulated results are fit for MHD flow at Hartmann numbers
less than 100. Tezer-Sezgin applied the boundary element method
to MHD flow [5] for values of Hartmann number up to 300. The
analytical finite element method [6] and the element-free Galerkin
method are adopted [7] to extend the range of the Hartmann num-
bers up to 1000. By using the residual-free bubble functions,
Nesliturk and Tezer-Sezgin [8] have solved the MHD flow problems
with FEM for the values of Hartmann number up to 105. Then
Zhang et al. applied [9] element-free Galerkin method using the
residual-free bubble functions and obtained the similar results
for Hartmann numbers up to 104.

A kind of truly meshless method, meshfree point collocation
method (MPCM), has been proposed to discretize directly the rele-
vant governing equations. The meshfree point collocation method
is known as its simplicity and efficiency to solve partial differential
equations (PDEs) without numerical integrations. In addition, its
simple formulation also attracts the attention of many researchers.
Oñate et al. [10] developed a point collocation scheme for fluid flow
problem on the basis of weighted least-square procedure, which
they called the finite point method. The finite point method includes
additional terms in the strong form to stabilize the convective term.
Oñate et al. [11] also applied this method to elasticity problems.
Kansa [12] solved PDEs using radial basis functions with a point col-
location method for hyperbolic, parabolic, and elliptic types. Yongsik
et al. [13] employed MPCM to solve the stream-vorticity formulation
of two-dimensional incompressible Navier–Stokes flows.

For MHD problems, the difficulty of solving the governing equa-
tions at high Hartmann numbers is similar to that of solving the
advection–diffusion equation when advection process dominates
diffusion, which can be explained by the formation of layers near
the walls or inside the region depending on the boundary condi-
tions. A special treatment is needed to stabilize the numerical
approximation for these kinds of problems. Upwinding schemes
are one of the general techniques to stabilize FEM [14] and FVM
[15]. Gu and Liu [16] employed the similar concept in the meshless
methods to solve the two-dimensional convection-dominated
problem with high accuracy.

A meshfree point collocation method, with an upwinding
scheme (UMPCM), for two-dimensional fully developed MHD flow
problems is presented in this paper. The moving least-square
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(MLS) approximation is employed to construct shape functions. A
number of numerical results of MHD analyses are presented and
compared with the exact [17] solutions for the flow in an insulated
duct at Hartmann numbers ranged from 5 to 106. Furthermore,
numerical solutions are also obtained for the oblique external ap-
plied magnetic field.

The organization of the rest of this paper is as follows: In Sec-
tion 2 the basic equations for MHD flow are presented. In Section
3 the moving least-square approximation is outlined. In Section 4
a brief discussion of the upwinding scheme is presented. The
numerical results are reported in Section 5. Finally some conclud-
ing remarks are given in Section 6.

2. The physical problem

It is well known that Maxwell equations of electromagnetism
and the basic equations of fluid mechanics lead to the coupled sys-
tem of equations in velocity and magnetic field. These equations
are for the steady, laminar, fully developed flow of viscous, incom-
pressible, and electrically conducting fluid in a rectangular duct X,
subjected to a constant and uniform applied magnetic field B0.

The external applied magnetic field B0 lies in x–y plane of a sec-
tion of the duct and forms an angle a with y-axis. z-axis is along the
axial direction in which the flow is taking place for Newtonian fluid

Fig. 1. Duct geometry and external applied magnetic field.

Fig. 2. Velocity and induced magnetic field for M = 5: (a) MPCM and (b) UMPCM.
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