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a b s t r a c t

In this paper, analytic relations between the macroscopic variables and the mesoscopic variables are
derived for lattice Boltzmann methods (LBMs). The analytic relations are achieved by two different meth-
ods for the exchange from velocity fields of finite-type methods to the single particle distribution func-
tions of LBM. The numerical errors of reconstructing the single particle distribution functions and the
non-equilibrium distribution function by macroscopic fields are investigated. Results show that their
accuracy is better than the existing ones. The proposed reconstruction operator has been used to imple-
ment the coupling computations of LBM and macro-numerical methods of FVM. The lid-driven cavity
flow is chosen to carry out the coupling computations based on the numerical strategies of domain
decomposition methods (DDMs). The numerical results show that the proposed lifting relations are accu-
rate and robust.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, LBM has been widely used to simulate fluid
flow problems [1,2], including complex turbulent fluid flows [3,4]
and multiscale modeling [5,6]. This method is based on the
Boltzmann kinetic equation which is used to describe a number
of interacting populations of particles. As described in [7], ‘‘The
LBE could potentially play a twofold function-as a telescope for
the atomistic scale and a microscope for the macroscopic scale’’.
In [8] dense fluids flow past and through a carbon nano tube
(CNT) was studied by a hybrid model coupling LBM and MDS.
The authors pointed out that replacing the finite volume solver
by a LBM aims to take advantage of the mesoscopic modeling
inherent in LB simulations. Thus LBM is a mesoscopic method in
nature is a widely-accepted understanding in the literature. The
macroscopic parameters such as fluid density, velocity and pres-
sure can be obtained via some averages of the mesoscopic variable
which conform the basic conservation laws of mass and momen-
tum [2]. In practical applications of LBM to simulate a macroscopic
problem, a crucial problem is confronted, that is, a reasonable
initial meso-field must be specified to start the evolution process.
The first initializing method was proposed in [9] in 1993. Recently,

several methods have been proposed to improve the accuracy of
numerical results and reduce the initial layers (oscillation layers)
[10,11]. Such oscillations have a numerical origin and are due to
the artificial compressibility of LBM. Here, ‘‘initial layer’’ refers to
such a computational stage within which the macroscopic param-
eters are oscillating. When the initial data is not well-prepared,
there is an initial layer during which the solution adapts itself to
match the profile dictated by the environment. For the LBM, the
existence of the initial layers is a common phenomenon [10]. In
this paper, we will derive the lifting relations between the macro-
scopic variables and the mesoscopic variables in LBM by two ways.
According to the authors’ knowledge, the proposed lifting relations
in this paper are different from those in the existing literature
[9–15]. The proposed relations will offer us some new views about
the reconstruction of nonequilibrium distribution functions in
LBM.

Challenging multiscale phenomena or processes are widely
existed in material science, chemical engineering process, energy
and power engineering, and other engineering fields. Generally
speaking, for a multiscale problem, we often must use different
methods to numerically model the processes at different geometric
sub-regions and exchange solution information at interface
[16–19]. Such coupling computations are widely adopted in the
present-day multiscale simulation. As indicated above LBM is a
kind of mesoscopic method, which is a candidate to implement
the meso–macro or micro–meso coupling computations in
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engineering applications [7]. So, the proposed method not only can
be used to obtain a better initial field for LBM, but also can be
adopted in the multi-scale computation. For example in [7] the
possibility of coupling LBM with molecular dynamics simulation
(MDS) was investigated and found that with proper time and
geometric scales the two numerical methods can be coupled. And
in [8] such coupling simulation was conducted. In the existing lit-
eratures the coupling of finite difference method (FDM, which is a
macrosopic method) with LBM was adopted in [19–21], but the
proposed coupling method is similar to a multigrid method and a
simple regularization formula is used in their computations. The
regularization formula in [19] only considers the first-order
approximation of the single particle distribution function and the
coupling formula in [20] is only used to deal with the one-dimen-
sional reaction–diffusion system. In [8] the coupling between LBM
and MDS was implemented by exchange of velocity and velocity
gradient at the interface region. In this paper, the proposed
meso–macro (or micro–meso) coupling is expected to be used for
domain decomposition methods, in which LBM and macro-type
numerical method (or micro-type numerical method and LBM)
are adopted in different sub-domain and information is exchanged
at the interface. We believe that our proposed relation is more use-
ful method for engineering multiscale computations. In addition,
the proposed coupling method can also be used to carry out the
multigrid computations and equation-free multiscale (EFM) com-
putations [22]. It is well-known that LBM is very powerfull for
the parallel computing on a low cost [23,24]. So, the proposed rela-
tion can be used in the parallel simulations for multiscale simula-
tions of complex fluid flows based on the refinement strategies.

To the authors’ understanding the glossary ‘‘lifting relation’’
means that macroscopic variables in a lower degree-of-freedom
(DoF) system are upscaled to meso/microscopic variables in a high-
er DoF system. Generally, it is difficult to establish the one-to-one
map from a lower DoF system to a higher DoF system, although the
lower DoF system can be seemed to be an approximate or
approaching form of a higher DoF system in some referred scales.
This situation happens when numerical results of different scales
are coupled at the same location. For example when MDS and con-
tinuum method are coupled, reference [25] indicated that it is
straightforward to obtain the continuum quantities (such as veloc-
ity, pressure) from the particle description by averaging over the
local region and over time, but the reverse problem, generating
meso/microscopic particle configuration from known macroscopic
quantities is non-trivial and must necessarily be non-unique. The
glossary ‘‘lifting relation’’ in the title of this paper is proposed
based on the concept of the DoF of the governing equations.

In this paper, we will give two methods to establish the rela-
tions between variables of the Navier–Stokes equations and vari-
ables of LBM. Numerical tests demonstrate that the proposed
methods of computing non-equilibrium distribution functions are
effective and accurate.

The rest of the paper is organized as follows. In Section 2, the
details of multi-scale derivation of non-equilibrium distribution
functions is given. In Section 3, the non-equilibrium distribution
functions are obtained by Boltzmann–BGK equations. In Section
4, the performances of the proposed relations to reconstruct non-
equilibrium distribution functions are demonstrated by numerical
tests. Finally, some conclusions are given.

2. Lattice Boltzmann hydrodynamics and multiscale approach

In this section, we will review LBM and the corresponding mac-
roscopic equation. Based on this review, we will derive a relation
for lifting macroscopic variables to microscopic variables by multi-
scale approach.

2.1. Lattice Boltzmann hydrodynamics

We now introduce the lattice Boltzmann–BGK model as a solver
for the weakly-compressible Navier–Stokes equations. LBM is built
up from the lattice gas cellular automata models [2]. The numerical
scheme of LBM is established based on a finite discrete-velocity
model of the Boltzmann–BGK equation and can be expressed as
follows

fiðxþ dtci; t þ dtÞ � f ðx; tÞ ¼ Xi; ð1Þ

where fi represents the single-particle distribution function along
the direction ci (i = 0, . . . , n), ci is the element of the discrete velocity
set V ¼ fc0; . . . ; cng. Xi denotes the collision operator which is non-
dimensional. The macroscopic variables, the density q and the
velocity u, are defined locally by the distribution functions as
follows

qðx; tÞ ¼
Xn

i¼0

fiðx; tÞ ¼
Xn

i¼0

f eq
i ðx; tÞ; ð2Þ

uðx; tÞ ¼ 1
q
X
ci2V

cifiðx; tÞ ¼
1
q
X
ci2V

cif
ðeqÞ
i ðx; tÞ: ð3Þ

For the standard LBM, the collision operator is defined by the so-
called BGK collision

XBGK
i ¼ � 1

slbm
½fiðx; tÞ � f ðeqÞ

i ðx; tÞ�: ð4Þ

For the convenience of comparison, from here, we use the similar
notations in [26]. The local equilibrium distribution f ðeqÞ

i is defined
by

f ðeqÞ
i ðx; tÞ ¼ f LðeqÞ

i ðx; tÞ þ f QðeqÞ
i ðx; tÞ; ð5Þ

where f LðeqÞ
i ðx; tÞ and f QðeqÞ

i ðx; tÞ denote the linear part and the qua-
dratic part of the equilibrium distribution, respectively. The linear
part is given by

f LðeqÞ
i ðx; tÞ ¼ xiq 1þ 1

c2
s

ci � uðx; tÞ
� �

; ð6Þ

and the quadratic part is expressed by

f QðeqÞ
i ðx; tÞ ¼ xi

1
2c4

s
qðuðx; tÞuðx; tÞÞ : Ri; ð7Þ

where cs is the lattice sound speed of the model, xi denotes the
weight and Ri is a second-order tensor defined by

Riab ¼ ciacib � c2
s dab: ð8Þ

The tensor product definition between two first order tensors a and
b is given as follows

ðabÞab ¼ aabb; ð9Þ

and the corresponding second-order tensor :-product between A
and B is given by

A : B ¼
Xd

a;b¼1

AabBab; ð10Þ

where d denotes the spatial dimension.
In this paper, we mainly focus on the standard LBM. By the Chap-

man–Enskog expansion, under the small Ma number restriction
(Ma 6 0.2), we can recover the Navier–Stokes equations as follows

@tqþ @aðquaÞ þ Oðdt2Þ ¼ 0; ð11Þ

@tðquaÞ þ @bðquaubÞ ¼ �@apþ m@bðqð@aub þ @buaÞÞ þ Oðdt2Þ
þ Oðdtu3Þ; ð12Þ
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