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a b s t r a c t

This paper presents some recent advancements of the computational efficiency of a Discontinuous Galer-
kin (DG) solver for the Navier–Stokes (NS) and Reynolds Averaged Navier Stokes (RANS) equations. The
implementation and the performance of a Newton–Krylov matrix-free (MF) method is presented and
compared with the matrix based (MB) counterpart. Moreover two solution strategies, developed in order
to increase the solver efficiency, are discussed and experimented. Numerical results of some test cases
proposed within the EU ADIGMA (Adaptive Higher-Order Variational Methods for Aerodynamic Applica-
tions in Industry) project demonstrate the capabilities of the method.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The growing interest that the DG method has been receiving in
the recent years is due to various attractive features of the method.
In fact, DG methods are finite element methods which account for
the physics of wave propagation by means of Riemann solvers as in
upwind finite volume methods but, unlike the latter, they can
achieve higher-order accuracy on general unstructured grids using
high degree polynomials as it is customary in the classical (contin-
uous) finite element method.

Despite these advantages, DG methods for real life applications
still require to be assessed and improved in many respects, such as
applicability to complex flow models, shock-capturing properties
and computational efficiency. In the present paper the latter topic
will be discussed.

It is well known that for turbulent simulations an explicit
time integration of the semidiscrete DG equations is not a suit-
able choice since: (i) the computational grid is highly stretched
around the wall boundaries; (ii) the RANS equations are stiff;
(iii) the CFL (Courant–Friedrichs–Lewy) stability limit rapidly de-
creases as the polynomial order of the solution grows. Thus in
this case the use of an implicit in time scheme is almost manda-

tory. Nevertheless the solution of the large block sparse linear
system arising from an implicit time DG discretization of the
NS and RANS equations becomes prohibitively expensive as the
grid density and/or the order of polynomial approximation in-
creases. For this reason effective numerical strategies must be
developed and recently this topic has been considered by many
researches. A natural choice refers to the Newton–Krylov meth-
od: GMRES algorithm preconditioned by a standard incomplete
lower–upper factorization (ILU) are adopted both by Bassi et al.
[1,2] and Landmann et al. [3] while Person and Peraire [4], Dios-
ady and Darmofal [5] and Shahbazi et al. [6] use a linear p-mul-
tigrid (where lower-order approximations serve as ‘‘coarse’’ levels
while the same spatial grid elements are used on all levels) algo-
rithm, with different types of smoothers for preconditioning the
GMRES iterative solver. This approach seems to be particularly
suitable for RANS simulations and, as a matter of fact, all the
authors mentioned above have reported high-order turbulent
results.

A criticism for this approaches is related to the huge memory
requirements needed for the storage of both the Jacobian and
the preconditioning matrix, except the approach of Diosady
and Darmofal which use an in-place Block-ILU(0) factorization
algorithm and thus store only one matrix. For this reason non-
linear h/p-multigrid, also due to the long-term experience made
with finite volume methods, is considered a promising
alternative.
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Nevertheless even if nonlinear p-multigrid, which has been
recently intensely developed by many authors [7–11], with
explicit smoothers does not require any matrix memorization to
enhance efficiency, semi-implicit and/or coarse level fully implicit
solvers are widely adopted, thus reducing the memory gain of the
method.

Moreover Shahbazi et al. [6], in a recent and extensive compar-
ative study about the linear and non-linear p-multigrid methods
for DG, claim that the multigrid preconditioned Newton-GMRES
yields the most efficient and scalable algorithm. Finally, at the mo-
ment, only few turbulent computations have been published in lit-
erature, see for instance Bassi et al. [12,13], probably because these
kind of algorithms still suffer from a lack of robustness if compared
with Newton–Krylov approaches.

With the aim of saving at least one matrix storage, here a pre-
conditioned (by an ILU(0) factorization of the analytically com-
puted Jacobian matrix) Newton-GMRES matrix-free solver has
been implemented in a high order DG code. A similar approach
has been previously adopted by Rasetarinera and Hussani [14]
and K. Hillewaert et al. [15] but only in the context of the DG solu-
tion of the compressible Euler inviscid equations. Here both vis-
cous (NS) and turbulent (RANS) computations are performed and
an in depth performance comparison with the standard matrix
based counterpart is reported.

An analogous analysis, for standard finite element code, can be
found in Kennedy et al. [16] and in Behara and Miattal [17] but in
those cases the linear system solver is preconditioned by a simple
block diagonal matrix which is not a feasible approach for a large,
high order, DG simulation due to the stalling of the linear solver re-
lated to the high condition number of the iterative matrix arising
from the discretization. Thus in this case is not possible to achieve
the extremely competitive CPU performance, reported in the above
works, which overtakes that of the MB GMRES, when a small Kry-
lov space is employed.

In fact, since in our case the Jacobian matrix is still evaluated,
the MF algorithm operation count is expected to be always larger.
However, since this matrix is used only for preconditioning pur-
pose, MF enjoys more flexibility, compared to standard algorithm,
which is exploited by two approaches here proposed in order to in-
crease the algorithm computational efficiency.

2. Governing equations

The complete set of RANS and k–x equations can be written as:
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where the pressure, the turbulent and total stress tensors, the heat
flux vector and the eddy viscosity are given by:
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Here c is the ratio of gas specific heats, Pr and Prt are the molecular
and turbulent Prandtl numbers and
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is the mean strain-rate tensor. The closure parameters a, a�, b, b�, r,
r� are those of the high- or low-Reynolds number k–x model of
Wilcox [18].

Notice that the RANS and k–x equations above are not in stan-
dard form since, in order to deal with the stiffness of the k–x equa-
tions, we resorted to a non-standard implementation of the two
equations differential model. The main features of this implemen-
tation consist in (i) using as variable ~x ¼ logx rather than x and
(ii) fulfilling the realizability constraints employing in Eqs. (3), (4)
and (10) the variable ~xr ¼maxð ~x; ~xr0Þ, where ~xr0 is the lower
bound predicting positive normal turbulent stresses and satisfying
the Schwarz inequality for the shear turbulent stresses. A detailed
description of the model can be found in [2].

3. DG space discretization

The governing Eqs. (1)–(5) can be written in the following com-
pact form:
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where u; s 2 RM denote the vectors of the M conservative variables
and source terms, Fc; Fv 2 RM � RN denote the inviscid and viscous
flux functions, respectively, and N is the space dimension.

Multiplying Eq. (12) by an arbitrary test function /, integrating
over the domain X and integrating by parts the divergence terms,
the weak form of Eq. (12) reads:Z
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where F is the sum of the inviscid and viscous fluxes.
In order to construct a DG discretization of Eq. (13), we consider

an approximation Xh of X and a triangulation Th ¼ fKg of Xh, i.e.,
a set of ne non-overlapping elements K not necessarily simplices.
We denote with E0

h the set of internal element faces, with E@
h the

set of boundary element faces and with Eh ¼ E0
h [ E@

h their union.
We moreover set
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The solution is approximated on Th as a piecewise polynomial
function possibly discontinuous on element interfaces, i.e., we
assume the following space setting for each component uhi

¼
uh1 ; . . . ;uhM of the numerical solution uh:
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