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a b s t r a c t

The lattice Boltzmann method is used to investigate the solute transport in shallow water flows. Shallow
water equations are solved using the lattice Boltzmann equation on a D2Q9 lattice with multiple-relax-
ation-time (MRT-LBM) and Bhatnagar–Gross–Krook (BGK-LBM) terms separately, and the advection–dif-
fusion equation is also solved with a LBM-BGK on a D2Q5 lattice. Three cases: open channel flow with
side discharge, shallow recirculation flow and flow in a harbour are simulated to verify the described
methods. Agreements between predictions and experiments are satisfactory. In side discharge flow,
the reattachment length for different ratios of side discharge velocity to main channel velocity has been
studied in detail. Furthermore, the performance of MRT-LBM and BGK-LBM for these three cases has been
investigated. It is found that LBM-MRT has better stability and is able to satisfactorily simulate flows with
higher Reynolds number. The study shows that the lattice Boltzmann method is simple and accurate for
simulating solute transport in shallow water flows, and hence it can be applied to a wide range of envi-
ronmental flow problems.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Shallow water flows exist in rivers, channels, coastal seas, estu-
aries and harbours. The flows are described by shallow water equa-
tions, which are widely used in hydraulic engineering. Recently,
much attention has been given to solute transport in the shallow
waters such as distribution of pollution concentration and trans-
port of suspended sediments [1–6]. Thus, prediction of the flows
and related transport is important in environmental engineering.

As a relatively new numerical approach, the lattice Boltzmann
method has been used successfully in various areas [7]. Its advan-
tage in solving the shallow water equations [8–14] and advection–
diffusion equation have been widely demonstrated [15–18].

The Bhatnagar–Gross–Krook (BGK) term is often applied to the
most popular lattice Boltzmann method due to its great simplicity
[19,20]. However, it has drawbacks arising from the fixed Prandtl
number (Pr = 1) and fixed ratio between the kinematic and bulk
viscosities. In order to overcome this, the multiple-relaxation-time
(MRT) lattice Boltzmann equation has been developed by
d’Humieres [21]. Lallemand and Luo investigated the stability of
a MRT lattice Boltzmann equation [22]. Since then, it has attracted
more and more attention.

In this paper, the lattice Boltzmann method on a nine speed
square lattice (D2Q9) using both MRT and BGK collision terms

has been applied to shallow water equations. The advection–
diffusion equation is also solved by the lattice Boltzmann method
with a D2Q5 lattice model for solute transport. The methods have
been applied to three cases: side discharge, shallow recirculation
flow and flow in a harbour. The results for velocity fields, temper-
ature fields and concentration distribution have been compared
with corresponding experimental data. Furthermore, the relative
performance of BGK-LBM and MRT-LBM has been investigated.

2. Governing equations

The two-dimensional shallow water equations and the
advection–diffusion equation can be expressed as:
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where the subscripts i and j are space direction indices and the
Einstein summation convention is used, t is time, m is the kinematic
viscosity, C is the depth-averaged concentration, Di is the dispersion
coefficient in direction i, Sc is the depth-averaged source term, h is
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water depth, ui is velocity, xi stands for either x or y in direction i or
j, Fi is the body force per unit mass in direction i and can be ex-
pressed by Fi ¼ �gh @zb

@xi
� sbi

q . The bed shear stress sbi in i direction
is given by sbi ¼ qCbui

ffiffiffiffiffiffiffiffi
uiuj
p

, in which, Cb ¼
gn2

b

h1=3 with Manning coef-
ficient nb for bed roughness.

3. Lattice Boltzmann models

3.1. Lattice Boltzmann equation for shallow water equations

If the 9-speed square lattice D2Q9 model is adopted, the lattice
Boltzmann equations with BGK [23] and MRT [18] for shallow
water equations are as follows:

BGK:
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MRT:
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where m = Tf, f = T�1 and S is the relaxation matrix in the moment
space, S = diag(s1, s2, s3, s4, s5, s6, s7, s8, s9), T is the transformation
matrix defined by [18]
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fa is the distribution function of particle, f eq
a is the local equilibrium

distribution function, e = Dx/Dt, Dx is the lattice size, Dt is the time
step, eai is the particle velocity in link a. For the 9-speed square lat-
tice shown in Fig. 1, each particle moves one lattice unit at its veloc-
ity along the eight links represented with number 1–8 and 0
indicates a particle at rest with zero speed.

The particle velocity vector is
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The local equilibrium distribution function f eq
a is defined as

f eq
a ¼
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The equilibrium values of moments meq are calculated by:
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According to this definition, the water depth h and velocity ui

can be obtained by the following equations [23]
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By using the Chapman–Engkog procedure [23], the shallow
water equations can be recovered from Eqs. (4) and (5) with the
kinematic viscosity for BGK
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Fig. 1. Nine-speed square lattice (D2Q9) in the horizontal plane.
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Fig. 2. Five-speed square (D2Q5) lattice in horizontal plane.
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Fig. 3. Predicted streamlines for M = 0.105 by MRT-LBM.
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