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Stokes flow in a curved duct – A Ritz method
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a b s t r a c t

Fully-developed slow viscous flow in a curved duct of arbitrary curvature is solved by an efficient Ritz
variational method. For a duct of rectangular cross section the Ritz results agrees well with those
obtained by a Fourier–Bessel expansion. The Ritz method is then applied to the elliptic cross section.
The fluid properties for Stokes flow in a curved duct are discussed.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The viscous flow in a curved duct is fundamental in fluid
transport. Hundreds of articles on the various aspects of the flow
have been reported [1,2]. But practically all of the literature is
concerned with the high or moderate Reynolds number flows,
which lead to phenomena such as secondary flow and non-
uniqueness.

Due to the miniaturization of fluid apparatus, the flows in small
curved ducts are becoming important. Small curved vessels are
also common in the microcirculation. Typical Reynolds numbers
encountered are 10�3 or lower, and the Stokes equation is ade-
quate to describe the flow. There are several consequences of very
low Reynolds numbers. Firstly secondary flow, of order Reynolds
number, is unimportant. Secondly the entrance effects are limited
to less than one width, and the fully developed state is rapidly
established. Thus the fully developed results can be useful even
for short segments of a curved duct.

Even for Stokes flow, the theoretical analysis of the flow in a
curved duct is difficult. One can use Dean’s orthogonal coordinates
[1], but the resulting equation is not separable, and aside from full
numerical integration, only perturbations for a slightly curved tube
have been done [3–5]. There seems to be few other relevant liter-
ature. In this note we shall present a powerful Ritz method for
treating Stokes flow in a curved duct of any cross section and the
curvature need not be small.

2. Stokes flow in a curved duct of rectangular cross section

Fig. 1 shows the cross section of the curved duct. Let the cen-
troid of the cross section of the curved duct be on an arc of radius
R. We normalize all lengths by R, the velocity by �RG/l, where G
is the azimuthal pressure gradient and l is the fluid viscosity. The
fully developed Stokes equation in cylindrical coordinates (r, h, z)
is

trr þ
1
r
tr �

1
r2 tþ tzz ¼ �

1
r

ð1Þ

where t is the azimuthal velocity. The boundary condition is that
t = 0 on the duct wall. The only analysis for Stokes flow in a curved
duct seems to be due to Wang [6] where the cross section is a rect-
angle of 2bR by 2aR as in Fig. 1. We shall briefly present a simpler
Fourier–Bessel solution for the no-slip case, which will be compared
to our Ritz results later.

Let

t ¼
X1
n¼1

cosðbnzÞfnðrÞ; bn ¼ n� 1
2

� �
p
b

ð2Þ

which satisfies the boundary conditions at z = ±b. Now expand unity

1 ¼
X1
n¼1

An cosðbnzÞ; An ¼
2ð�1Þnþ1

bbn
ð3Þ

Eq. (1) gives
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The general solution is

fnðrÞ ¼
An

b2
nr
þ C1nK1ðbnrÞ þ C2nI1ðbnrÞ ð5Þ

Here K1 and I1 are modified Bessel functions. The boundary con-
ditions at r = 1 ± a are

fnð1� aÞ ¼ 0; f nð1þ aÞ ¼ 0 ð6Þ

giving

C1n ¼ Anfð1þ aÞI1½ð1þ aÞbn� � ð1� aÞI1½ð1� aÞbn�g=Dn

C2n ¼ �Anfð1þ aÞK1½ð1þ aÞbn� � ð1� aÞK1½ð1� aÞbn�g=Dn

Dn ¼ ð1� a2Þb2
nfI1½ð1� aÞbn�K1½ð1þ aÞbn�

� I1½ð1þ aÞbn�K1½ð1� aÞbn�g

ð7Þ

The flow rate, normalized by R3G/l, is then

Q ¼ 2
X1
n¼1

ð�1Þnþ1

bn
Sn ð8Þ

where

Sn ¼
Z 1þa

1�a
fnðrÞdr

¼ bnf2Anbnðtanh�1aÞ � C2 Ih 0½ð1� aÞbn� � I0½ð1þ aÞbn�i
þ C1hK0½ð1� aÞbn� � K0½ð1þ aÞbn�ig ð9Þ

The average or mean velocity is

V ¼ Q
4ab

ð10Þ

If the width b is infinite (a slit), the z dependence is absent and
the form of the solution is different. Eq. (1) gives

t ¼ �1
2

r ln r þ C3r þ C4
1
r

ð11Þ

The boundary conditions give
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The average velocity is

V ¼ 1
2a

Z 1þa

1�a
tdr ¼ 1

16a2 f4a2 � ð1� a2Þ2 ln
1� a
1þ a

� �� �2

g ð14Þ

3. The Ritz method

We present the Ritz method which can be applied to any cross
section. The Ritz or Rayleigh–Ritz variational method [7,8] has
been used extensively in vibration of plates and membranes, but
not as often in fluid mechanics, After some work, we find Eq. (1)

is equivalent to minimizing the following integral over the cross
sectional area.

J ¼
ZZ
ðrt2

r þ t2=r þ rt2
z � 2tÞdzdr ð15Þ

This can be verified by using Euler’s condition for minimizing a
functional [7]. Let s = r � 1 and let

gðs; zÞ ¼ 0 ð16Þ

describe the tube wall. Let the solution be represented by the series

t ¼
X1
n¼1

ciuiðs; zÞ ð17Þ

where ci are coefficients to be determined, and ui is a complete set
of functions which satisfy the boundary conditions. The necessary
condition for minimal J is

@J
@ci
¼ 0 ð18Þ

which can be shown to be equivalent toX
Aijcj ¼

X
Bi ð19Þ

where

Aij ¼
ZZ
½ðsþ 1Þðuisujs þuizujzÞ þ

1
sþ 1

uiuj�dzds ð20Þ

Bi ¼
ZZ

ui dzds ð21Þ

Then the linear algebraic Eq. (19) is inverted for the coefficients
ci. The flow rate is simply

Q ¼
ZZ

tdzds ¼
X

ciBi ð22Þ

and the average velocity is

V ¼ QZZ
dzds

ð23Þ

We illustrate by computing the Stokes flow through the curved
rectangular duct studied previously. The boundary is bounded by

g ¼ ðz2 � b2Þðs2 � a2Þ ¼ 0 ð24Þ

Consider the set of polynomials

fuig ¼ gðz; sÞf1; s; s2; z2; s3; sz2; s4; s2z2; z4; s5; s3z2; sz4; . . .g ð25Þ

where due to symmetry, only the even powers of z are used. The
number of terms can be taken as 4, 6, 9, 12, 16, etc., retaining the
highest homogeneous powers. Eqs. (20) and (21) are evaluated by
integrating analytically with respect to y then numerically with re-
spect to x (Mathematica adaptive recursion library program with a
relative error of 10�8). The coefficients are then found by Eq. (19).
Table 1 shows a comparison of the two methods. Both are accurate
and efficient.

The results for other dimensions are given in Table 2. Both
methods agree within 0.1%. The b =1 results are from Eq. (14).
Typical constant velocity lines are shown in Fig. 2.

Fig. 1. Cross section of a curved duct and the coordinate system. The dashed line (z-
axis) is the symmetry axis about which the cross section is rotated.

Table 1
Typical convergence for Bessel function solution and Ritz solution for a rectangular
duct (a = b = 0.5).

Terms used 4 6 9 12 16 20

Eq. (10) 0.03541 0.03543 0.03544 0.03544 0.03544 0.03544
Eq. (22) 0.03532 0.03537 0.03543 0.03543 0.03544 0.03544

146 C.Y. Wang / Computers & Fluids 53 (2012) 145–148



Download	English	Version:

https://daneshyari.com/en/article/762617

Download	Persian	Version:

https://daneshyari.com/article/762617

Daneshyari.com

https://daneshyari.com/en/article/762617
https://daneshyari.com/article/762617
https://daneshyari.com/

