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The lattice Boltzmann method (LBM) has been widely used for the simulations of the incompressible
Navier-Stokes (NS) equations. The finite difference Boltzmann method (FDBM) in which the discrete-
velocity Boltzmann equation is solved instead of the lattice Boltzmann equation has also been applied
as an alternative method for simulating the incompressible flows. The particle velocities of the FDBM
can be selected independently from the lattice configuration. In this paper, taking account of this advan-
tage, we present the discrete velocity Boltzmann equation that has a minimum set of the particle veloc-
ities with the lattice Bharnagar-Gross-Krook (BGK) model for the three-dimensional incompressible NS
equations. To recover incompressible NS equations, tensors of the particle velocities have to be isotropic
up to the fifth rank. Thus, we propose to apply the icosahedral vectors that have 13 degrees of freedom to
the particle velocity distributions. Validity of the proposed model (D3Q13BGK) is confirmed by numerical
simulations of the shear-wave decay problem and the Taylor-Green vortex problem. With respect to
numerical accuracy, computational efficiency and numerical stability, we compare the proposed model
with the conventional lattice BGK models (D3Q15, D3Q19 and D3Q27) and the multiple-relaxation-time
(MRT) model (D3Q13MRT) that has the same degrees of freedom as our proposal. The comparisons show
that the compressibility error of the proposed model is approximately double that of the conventional
lattice BGK models, but the computational efficiency of the proposed model is superior to that of the oth-
ers. The linear stability of the proposed model is also superior to that of the lattice BGK models. However,

in non-linear simulations, the proposed model tends to be less stable than the others.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) [1-11] has been widely
used for simulations of the incompressible Navier-Stokes (NS)
equations. The simplest lattice Boltzmann equation is the lattice
Bharnagar-Gross—Krook (BGK) equation which is based on a sin-
gle-relaxation-time (SRT) approximation [12]. The multiple-relax-
ation-time (MRT) lattice Boltzmann equation that possesses
many more degrees of freedom than the lattice BGK model was
also developed as a numerically stable lattice Boltzmann model
[10,11]. Due to use of different relaxation times, the MRT lattice
Boltzmann equation overcomes some deficiencies of the lattice
BGK equation, such as a fixed Prandtl number and a fixed ratio be-
tween the kinetic viscosity and the bulk viscosity. However com-
putational efficiency of the MRT model is known to be inferior to
that of the lattice BGK model due to computation of multiple relax-
ation processes. In spite of the above mentioned deficiencies, the
lattice BGK model is the most popular lattice Boltzmann model
due to its simplicity and good computational efficiency. In the
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LBM, the velocity distribution functions propagate from one node
to adjacent nodes over the course of one time step. Therefore,
the particle velocities of the LBM are limited to those that exactly
link the lattice nodes.

The finite difference Boltzmann method (FDBM) [13-16] in
which the discrete-velocity Boltzmann equation is solved instead
of the lattice Boltzmann equation has also been applied as an alter-
native method for simulating the incompressible flows. The parti-
cle velocities of the FDBM can be selected independently from the
lattice configuration due to use of the discrete-velocity Boltzmann
equation [15,16]. In spite of this advantage, the particle velocity
model developed for the LBM which needs many particle velocities
is often used in simulations of the FDBM [13-15]. For computa-
tional efficiency, it is desirable to find the minimal set of particle
velocities. In this paper, we present the discrete-velocity Boltz-
mann equation that has a minimum set of the particle velocities
with the lattice BGK (SRT) model for the three-dimensional incom-
pressible NS equations. It should be noted that the minimum set of
the particle velocities with the MRT model has already been pro-
posed by d’Humieres et al. [10]. This model has 13 particle veloci-
ties (D3Q13MRT) whose degrees of freedom are the same as those
of the particle velocities of our proposal (D3Q13BGK). We compare
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the proposed model, with respect to numerical accuracy, computa-
tional efficiency and numerical stability, with the commonly used
lattice BGK models (D3Q15, D3Q19 [7] and D3Q27 [8]) and the
D3Q13MRT model [10].

2. Discrete-velocity BGK model

In this section, we present the discrete-velocity Boltzmann
equation that has a minimum set of particle velocities with the lat-
tice BGK model for the three-dimensional incompressible NS
equations:

guy _

8X/3
Ay Ay 1 0p  ou,
—_ v 2 s
ox;

o * u/;% T Do 0%y

(1)

(2)

where t and x, are the time and the spatial coordinate. The sub-
scripts o« and B are the number of the spatial coordinates and the
summation convention is applied to these subscripts. u,, p, po and
v are the flow velocity in the x,, direction, the pressure, the reference
density and the kinetic viscosity, respectively.

We let c;, be the particle velocity of the ith particle in the x,
direction, where i =1,2,...,I and I represents the number of parti-
cle velocities. The subscript i represents the kind of particles and
the summation convention is not applied to this subscript. fi(x,,t)
is the velocity distribution function. The macroscopic variables p
and u, are defined as
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The equation to be solved in the FDBM is the following discrete-
velocity BGK equation [14-16]:
eq u 1
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where the relaxation time 7 is inversely proportional to density. 7 is
a constant for constant density flows. The local equilibrium velocity
distribution function f(p,u,) is a given function of the macro-
scopic variables. The MRT model can also be applied to the collision
process of Eq. (5) instead of the lattice BGK (SRT) model.

A non-dimensional expression is convenient for the following
discussions and numerical simulations. We let ¢y and L be the ref-
erence speed and length, respectively. The non-dimensional vari-
ables are defined as follows:
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From Egs. (3) and (4), the non-dimensional density and flow veloc-
ity are defined as
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The non-dimensional discrete-velocity BGK equation is defined as
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where ¢ =cot/L is the non-dimensional parameter proportional to
the Knudsen number.

In order to clarify the constraints of the local equilibrium distri-
bution function for the incompressible NS equations, we employ
the Chapman-Enskog expansion [17] for ¢ < 1, which is essentially
a formal multi-scaling expansion. The time derivative is expanded
as
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The velocity distribution function is also expanded about f,
o Bl )

ffq depends on the local macroscopic variables and should satisfy
the following constraints:
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ef MV + &2f® + 0(¢3) is the non equilibrium velocity distribution
function which has the following constraints:
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where [=1,2,.... Substituting the above expansions into the dis-
crete—velocity BGK Eq. (9), we find
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up to O(¢).
Multiplying Eq. (16) by unity and summing up all the particles,
we obtain the continuity or mass conservation equation:
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Multiplying Eq. (16) by ¢, and summing up all the particles, we ob-
tain the following equation:
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To recover the momentum equation from Eq. (18), the following
constraint is imposed on f:
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where ¢; = ¢s/c is non-dimensional speed of sound. The last term
of Eq. (18) has to correspond to a viscous term. Using Egs. (16)
and (19), we can rewrite the last term of Eq. (18) as
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The time derivatives are transferred to space derivatives using the
Euler equations which are obtained from Eq. (16). With some
algebra, we can finally obtain the following equation:
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