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a b s t r a c t

For aeroacoustics problems, the nonlinear Euler equations are often written in primitive variables in
which the pressure is treated as a solution variable. In this paper, absorbing boundary conditions based
on the Perfectly Matched Layer (PML) technique are presented for nonlinear Euler equations in primitive
variables. A pseudo mean flow is introduced in the derivation of the PML equations for increased effi-
ciency. Absorbing equations are presented in unsplit physical primitive variables in both the Cartesian
and cylindrical coordinates. Numerical examples show the effectiveness of the proposed equations
although they are not theoretically perfectly matched to the nonlinear Euler equations. The derived equa-
tions are tested in numerical examples and compared with the PML absorbing boundary condition in con-
servation form that was formulated in an earlier work. The performance of the PML in primitive variables
is found to be close to that of the conservation formulation. A comparison with the linear PML in nonlin-
ear problems is also considered. It is found that using nonlinear absorbing equations presented in this
paper significantly improves the performance of the absorbing boundary condition for strong nonlinear
cases.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Perfectly Matched Layer (PML) is a technique of developing
non-reflecting boundary conditions. Similar to the buffer zone
and sponge layer techniques [1,2], extra absorbing zones are
added, in which numerical solutions are damped [3]. However,
PML zones are usually much thinner compared to most other buf-
fer zones, as the absorbing zone is theoretically reflectionless for
multi-dimensional linear waves of any angle and frequency. Ber-
enger proposed firstly the PML for Maxwell’s equations to absorb
the electromagnetic wave at open boundaries in 1994 [4]. Bereng-
er’s technique was first applied to the linear Euler equations with a
uniform mean flow for the field of acoustics in 1996 [5]. Since then,
many efforts have been made in the study of the PML technique
and to extend its application and improve its performance. Some
recent advances in the development of PML as absorbing boundary
conditions were reviewed in Ref. [3]. In recent years, many pro-
gresses have been made in the development of PML for Computa-
tional Fluid Dynamics (CFD) and Computational Aeroacoustics
(CAA). It started with the cases for the linearized Euler equations
from constant mean flows to non-uniform mean flows [5–11], then
extended to the cases for the fully nonlinear Euler equations [12].

And the applications of PML to linearized Navier–Stokes equations
[13] and nonlinear Navier–Stokes equations [14] have been dis-
cussed. Recently, PML for the fully nonlinear Euler and Navier–
Stokes equations has been given in Ref. [15]. And in addition,
PML equations were developed to accommodate the uniform mean
flow in an arbitrary direction [16].

In our previous study of PML for nonlinear problems, the Euler
and Navier–Stokes equations were given in the conservation form
[15]. In the present paper, a PML absorbing boundary condition for
the nonlinear Euler equations in primitive variables is developed.
This is motivated by the observation that the nonlinear Euler equa-
tions in primitive variables remain a popular form of the governing
equations for inviscid compressible flows, especially for many
nonlinear aeroacoustics problems. The purpose of this paper is
two-fold. First, new absorbing boundary conditions in primitive
variables based on the PML technique are proposed for both the
Cartesian and cylindrical coordinate systems. Second, comparisons
in the performance with the nonlinear PML in the conservation
form and the linear PML in primitive variables are conducted, to
demonstrate the accuracy and necessity of proposed new set of
boundary conditions. To deal with the nonlinear terms involving
spatial derivatives and to facilitate the application of PML complex
change of variables in frequency domain, new auxiliary variables
are introduced. The final form of the absorbing equations is pre-
sented in unsplit physical primitive variables. Numerical examples
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are presented to demonstrate the validity and efficiency of the pro-
posed boundary conditions. In the next section, PML equations for
the nonlinear Euler equations in primitive variables are derived. It
follows a three-step method proposed in Refs. [10,15]. Firstly, a
proper space–time transformation is applied to the governing
equations, so that linear waves have consistent phase and group
velocities. Secondly, a PML complex change of variables is applied
in the frequency domain. And thirdly, the time domain PML
absorbing boundary condition is derived by a conversion of the fre-
quency domain equations to the time domain equations. Numeri-
cal examples that validate the efficiency and validity of the
proposed PML equations are presented in Section 3. Concluding re-
marks are given in Section 4.

2. PML equations in primitive variables

2.1. Cartesian coordinates

The two-dimensional nonlinear Euler equations in primitive
variables are written in the Cartesian coordinate system as
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where u and v are the velocity components in x and y directions,
respectively, p is the pressure, q is the density. In this paper, the
velocity is nondimensionalized by a reference speed of sound c1,
density by a reference density q1 and pressure by q1c2

1.
We wish to formulate absorbing equations so that out-going

disturbances can be exponentially reduced once they enter a PML
domain while causing as little numerical reflection as possible.
For nonlinear Euler equations, the solutions can often be parti-
tioned into two parts. One part is the time-independent mean
state, the other part is the time-dependent fluctuation. It would
be efficient to absorb only the time-dependent fluctuations in the
PML domains. When the mean flow is unknown, an approximate
mean flow or a pseudo mean flow can be used in the formulation
as in Ref. [17]. Therefore, we express the primitive variables inside
a PML domain as

u ¼ �uþ u0 ð2Þ

where the superscript ‘‘bar” indicates the mean flow (or the pseudo
mean flow), and the superscript ‘‘prime” indicates the difference be-
tween the mean flow and the actual flow. The mean flow or pseudo
mean flow should satisfy the steady Euler equations,
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According to Eqs. (1)–(3), we can get the following equation for the
time dependent part of the solution:
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We shall derive absorbing equations for Eq. (4). To facilitate the der-
ivation, Eq. (4) can be rewritten as
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For the stability of the PML, a space–time transformation
�t ¼ t þ bx is necessary in the derivation process, where b is a
parameter dependent on the mean flow profile, as discussed in
Refs. [10,15]. Here, a mean flow that is dominantly in the x direc-
tion is assumed. In transformed coordinates, Eq. (5) can be writ-
ten as follows:
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In the frequency domain, we have

ð7Þ

where a tilde indicates the time Fourier transformed variable and �
denotes convolution integral.

By applying the PML complex change of variables to Eq. (7), we
get

ð8Þ

where rx and ry are absorption coefficients, which are positive and
could be functions of x and y, respectively [5].

To rewrite the above equation in the time domain, we introduce
auxiliary variables q1 and q2 as

ð9Þ
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Then Eq. (8) becomes
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It is easy to get the time domain equations for q1 and q2 in the ori-
ginal space–time domain as
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Rewriting Eq. (11) back into the original space–time domain, we get
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