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a b s t r a c t

This paper presents a new one-dimensional (1D) second-order Runge–Kutta discontinuous Galerkin
(RKDG2) scheme for shallow flow simulations involving wetting and drying over complex domain topog-
raphy. The shallow water equations that adopt water level (instead of water depth) as a flow variable are
solved by an RKDG2 scheme to give piecewise linear approximate solutions, which are locally defined by
an average coefficient and a slope coefficient. A wetting and drying technique proposed originally for a
finite volume MUSCL scheme is revised and implemented in the RKDG2 solver. Extra numerical enhance-
ments are proposed to amend the local coefficients associated with water level and bed elevation in order
to maintain the well-balanced property of the RKDG2 scheme for applications with wetting and drying.
Friction source terms are included and evaluated using splitting implicit discretization, implemented
with a physical stopping condition to ensure stability. Several steady and unsteady benchmark tests
with/without friction effects are considered to demonstrate the performance of the present model.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Free-surface flows with a vertical scale that is much smaller than
the horizontal dimensions may be mathematically described by the
shallow water equations (SWE). In recent years, there have been
increasing interests in developing robust numerical schemes for
solving the shallow water equations for different engineering
purposes [1–10,15–17,19–28,30–36,40–53] and Godunov-type
schemes [18] have experienced a vigorous development in the last
two decades (see [30,33,41] for informative reviews). A Godunov-
type method generally solves the conservative form of the SWE
and introduces a hyperbolic wave pattern to the discretization
scheme (i.e. approximate Riemann solver [31]) to compute inter-cell
fluxes. Numerical oscillations appearing in those high-order
schemes [18,31] are controlled by incorporating a slope limiting
procedure [37]. To cope with complex domain topography in
practical simulations, various mathematical and numerical
techniques have been proposed to effectively discretize the bed
gradient source terms and achieve well-balanced schemes (e.g.
[1,2,22,24,34,26,27,42] and the references therein). Many real-
world applications also require a model to be able to handle
repeated wetting and drying over irregular domain topography
[3–10,15–17,19,21,23,25,35,36] and to correctly represent friction
effects [9,35,40,52]. These are the current active research topics in

computational hydraulics and are investigated in this work in the
context of a discontinuous Galerkin Godunov-type scheme.

It is not trivial to design a numerical approach to handling wet-
ting and drying as it is essentially a moving boundary problem
where the wet/dry interface continuously evolves along the prob-
lem domain. Various techniques have been reported to model wet-
ting and drying, mainly in the family of the finite volume methods.
Brufau et al. [6,7] presented a numerical technique that temporar-
ily modifies ground elevation to approximate wetting and drying
for both steady [6] and unsteady flows [7]. In [7], a numerical tech-
nique was implemented to control negative depth and eliminate
the mass error by locally modifying the flow variables in those cells
with negative water depth (the flow variables in the direct neigh-
bours of these cells might be also affected). Audusse et al. [1] initi-
ated the work towards a general strategy for wetting and drying
that avoids effective but sophisticated numerical treatments. The
authors’ method of hydrostatic reconstruction is becoming increas-
ingly popular and been extended by many other researchers (e.g.
[4,25,26]). Their work also stimulated another wetting and drying
technique proposed by Liang and Marche [35]. Other finite volume
wetting and drying algorithms include the work by Begnudelli and
Sanders [3], Casulli [10] and Nicolos and Delis [23]. Efforts have
also been made to include friction effects in a wetting and drying
algorithm for more practical hydraulic simulations (e.g.
[9,35,36,40,52]).

Runge–Kutta (RK) discontinuous Galerkin (DG) methods have
recently gained popularity in solving the SWE [5,8,15,
20–22,28,32,43–49] due to their many advantages over the spectral
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finite volume (e.g. WENO schemes [55,57]) and the traditional finite
element methods (i.e. continuous Galerkin method [56]). A DG space
discretization naturally combines the well-established finite ele-
ment theory (i.e. locally employing compactly-supported shape
functions) with those desirable finite volume tools (e.g. slope limiter,
Godunov-type fluxes) for fluid computation [11,12,14,32]. It con-
verts the system of conservation laws (e.g. the SWE) into a finite
number of time-dependent systems of ordinary differential equa-
tions (ODE), which are then integrated by an explicit Runge–Kutta
(RK) time integration method, in order to locally store and evolve
the finite element degrees of freedom [11–14]. The solution may
be of an arbitrary order of polynomial approximation in each ele-
ment and fall discontinuous over inter-elemental boundaries. There-
fore, RKDG methods preserve mass perfectly as the finite volume
methods do, and meanwhile, have further appealing properties, e.g.
ease to achieve high-order accuracy [12], scalability for parallel
implementation [14], straightforward setup towards a well-balanced
scheme [22,32] and suitability for adaptive discretizations with hp-
refinement [46,47]. However, a main disadvantage, compared with
the conventional finite element and spectral methods, is that the
RKDG methods normally involve a larger number of degrees of free-
dom, which consequently demands higher computational costs and
stricter stability requirement based on the CFL condition (see [54–
57] for details). This however is compensated by the better conver-
gence property and the inherent local structure of these methods,
which facilities parallel computation.

Few attempts have been devoted to the issue of wetting and dry-
ing in the context of a DG local approximation. Bokhove [5] used a
transient moving-mesh method to locate the wet/dry interface.
Ern et al. [15] proposed a less complicated fixed-mesh approach
based on a slope modification technique. But like the scheme pre-
sented by Brufau et al. [7], the method required addition of water
mass (i.e. removal of negative water depth) to ensure depth positiv-
ity. Another slope adaptation technique, which conserves mass, was
recently delivered by Bunya et al. [8] by employing the thin water
layer approach (i.e. to introduce small water depth in the dry cells
to prevent direct calculation of wet/dry interface). The technique
was also adopted by Gourgue et al. [21]. However, introduction of
thin water depth into the computation essentially violates the
momentum conservation and may therefore degrade the accuracy
of a numerical method [8,31] (this approach also requires a careful
treatment to avoid unphysical fluxes in dry areas [8]). To the current
authors’ best knowledge, no attention has yet been paid to the dis-
cretization of friction source terms in the context of an RKDG meth-
od involving wetting and drying.

In this paper, an alternative wetting and drying algorithm,
which further considers the friction effects, is designed for a sec-
ond-order RKDG model (RKDG2) [20,22]. The non-negative recon-
struction of the Riemann states, suggested by Liang and Marche
[35] for a MUSCL-type scheme [50] is extended to the RKDG2
framework. In order to preserve the well-balanced property in
the presence of wet/dry fronts, extra local amendments are made
to the linear projection of the topographic data [22] and the coef-
ficients defining the RDKG2 local linear approximate solution. The
friction source terms are discretized using a splitting implicit ap-
proach that independently applies to both the average and the
slope coefficients. The new RKDG2 scheme provides accurate pre-
dictions for frictional flows over complex topographies with mov-
ing wet/dry interfaces and ensures non-negative water depth and
mass conservation.

2. Shallow water equations (SWE)

The SWE for long-wave propagation may be derived by inte-
grating in depth the 3D Reynolds averaged Navier–Stokes equa-

tions by assuming negligible vertical particle acceleration and
thus hydrostatic distribution. Including bed slope and friction ef-
fects the SWE may be adequate for describing a wide range of 1D
and 2D shallow flow problems. In recent years, it has been gener-
ally accepted that the use of the surface water elevation g(x, t) in-
stead of the water depth h(x, t) as a flow variable in the
mathematical shallow water model may lead to a well-balanced
numerical scheme that preserves the solution of lake at rest at
the computational level [24,26,34,35]. Furthermore, adopting g
as a flow variable improves the quality of a slope limiting process
for RKDG methods [22,32]. In a matrix form, the 1D conservation
laws of the nonlinear hyperbolic SWE may be written as [24,35]

Ut þ Fx ¼ S ð1Þ

In which, U = [g, q]T. q(x, t) is the unit-width discharge.
g(x, t) = h(x, t) + z(x) with z(x) being the ground elevation.
u(x, t) = q(x, t)/h(x, t) is the depth-averaged velocity. t and x denotes,
respectively, the time and space coordinates. F = [q, q2/
h + g(g2 � 2gz)/2]T is the flux vector such that J = @F/@U has two real
eigenvalues k1;2 ¼ u� c and two associated real eigenvectors
e1;2 ¼ ½1; k1;2�T , where c ¼

ffiffiffiffiffiffi
gh

p
is the shallow wave speed and g is

the gravitational acceleration. Obviously, the system is strictly
hyperbolic if h – 0 [31]. S = Sb + Sf is the vector containing the bot-
tom topography and friction source terms. Sb = [0, Sb]T with
Sb = ggS0 and S0 = �oz/ox. Sf = [0, Sf]T, where Sf = �Cfu|u| with
Cf ¼ gn2

M=h1=3 and nM being the Manning coefficient.

3. RKDG2 scheme with wetting and drying

In this section, a general review of the RKDG2 scheme is first
presented for solving the 1D SWE. Then the new wetting and dry-
ing algorithm is proposed, followed by the discretization of the
friction source terms.

3.1. An overview of the RKGD2 method

The 1D domain, on which the governing equations are solved, has
a length of L and is divided by the interface points 0 = x1/2 < x3/

2 < � � � < xN+1/2 = L into N uniform intervals (cells). The size of an arbi-
trary cell Ii = [xi�1/2; xi+1/2] is Dx = xi+1/2 � xi�1/2 and the nodal point is
at xi = (xi+1/2 + xi�1/2)/2. When solving the conservation laws of the
SWE (1) using a finite element Galerkin method, a kth order approx-
imation of the flow variables Uh(x, t) = [gh(x, t), qh(x, t)]T is sought,
which belongs to the finite dimensional space Vh ¼ fp : pjIi

2
PkðIiÞg and Pk(Ii) is the polynomial space in Ii of degree at most k
[13]. The approximation gives (k + 1)th order of accuracy in space.
In order to derive the RKDG discretized governing equations, a test
function vh e Vh is introduced to (1), which is then integrated over
Ii. Subsequently, integrating by part the flux derivative term gives
a weak form to (1)Z

Ii

@tUhðx; tÞvhðxÞdxþ
"

FðUhðxiþ1=2; tÞÞvhðxiþ1=2Þ

� FðUhðxi�1=2; tÞÞvhðxi�1=2Þ �
Z

Ii

FðUhðx; tÞÞvhðxÞdx

#

¼
Z

Ii

SðUhðx; tÞÞvhðxÞdx ð2Þ

A finite number of local basis functions are introduced using the
L2-orthogonal basis of Legendre polynomials [12] on Ii to locally ex-
pand the flow variables. The expanded flow variables are then
substituted into the weak formulation (2) and a test function is
chosen to specifically coincide with a basis function. As a result
the DG space discretisation of (1) reduces to an independent
system of ODEs for the expansion coefficients [22]. In this work,
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