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a b s t r a c t

We present a numerical approximation of the Giesekus equation which is considered as a realistic model
for polymer flows. We use nonconforming finite elements on quadrilateral grids which necessitate the
addition of two stabilization terms. An appropriate upwind scheme is employed for the convective term.
The underlying discrete Stokes problem is then analysed. Finally, numerical tests are presented in order
to validate the code, illustrating its good behavior for large Weissenberg numbers. Comparisons with
Polyflow� and with the literature are also carried out.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We are interested in the numerical simulation of polymeric liq-
uids which are, from a rheological point of view, non-Newtonian
viscoelastic fluids. Their viscoelastic behavior can be observed in
a variety of physical phenomena, such as die swelling or the Weiss-
enberg effect, which are unseen with Newtonian liquids and which
cannot be predicted by the Navier–Stokes equations.

Despite numerous efforts, the numerical approximation of poly-
mer flows is still a challenging research area, due to the internal
coupling between the viscoelasticity of the liquid and the flow,
which is quantified by the Weissenberg number We ¼ _k _c with _c
the shear rate and k the relaxation time.

A major issue to be addressed is the breakdown in convergence
of the algorithms at critical values of We. The existing commercial
codes are generally only able to deal with We up to 10, which is
insufficient to describe polymer flows in a processing machine.

The rheological behavior of polymers is so complex that many
different constitutive equations have been proposed in the litera-
ture in order to describe these phenomena, see for instance [13].
We choose here to study the differential model of Giesekus which
presents two main advantages. First, it yields a realistic behavior
for shear flows, elongational flows and mixed flows. Second, only

two material parameters (the viscosity g and the relaxation time
k) are needed to describe the model. However, the Giesekus consti-
tutive law is strongly nonlinear since it involves a quadratic term
in the stress tensor.

Our goal is to develop a robust numerical scheme to obtain real-
istic simulation for high Weissenberg numbers. We consider here
the 2D steady case and quadrilateral meshes. We approximate the
velocity and the pressure by means of nonconforming finite
elements of Rannacher–Turek, which are well-known to be inf-sup
stable, and the stress tensor by means of totally discontinuous
piecewise functions. The analysis of the underlying discrete Stokes
problem has highlighted the necessity of adding two stabilization
terms, one in order to recover a Korn type inequality on noncon-
forming spaces, and the other to attain optimal convergence.
Concerning the Giesekus equation, the convective term on the stress
tensor is treated using an upwind scheme, similarly to the
well-known Lesaint–Raviart scheme.

The paper is organized as follows. In Section 2 we introduce the
Giesekus model. In Section 3, we describe the numerical scheme
and we perform the numerical analysis of the underlying Stokes
problem. In particular the influence of the regularization terms is
discussed. The last section is devoted to the numerical results.
We first study the convergence rate for the Giesekus model on
an academic test-case. Then we consider a benchmark problem,
the flow past a cylinder, for which we carry out some comparisons
and we illustrate the good behavior of the method for large Weiss-
enberg numbers. The robustness of the scheme is explained by the
positive definiteness of the conformation tensor, guaranteed by our
choice of discretization.
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2. The Giesekus model

In what follows, we write the vectors in bold letters and the sec-
ond order tensors in underlined letters.

Giesekus introduced in [6] the following constitutive law,
describing the behavior of a polymeric liquid in a polygonal do-
main X � R2:
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þ s ¼ 2gDðuÞ; ð1Þ

with s the viscous stress tensor, DðuÞ ¼ 1
2 ðruþruTÞ the strain rate

tensor and a 2 ]0,1[ a parameter. We take a = 0.5 which is physi-

cally acceptable. Here above, ru ¼ @ui
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and s
O

is the upper

convective derivative, defined in the steady case by:

s
O

¼ ðu � rÞs� sruT �rus:

The complete Giesekus model is obtained by adding the mass
and the momentum conservation laws, where the density q is sup-
posed to be constant:

r � u ¼ 0;
qðu � rÞu�r � sþrp ¼ f ;

and boundary conditions u = g on @ X,s = sDon the inflow boundary
oX� = {x 2 oX;u (x) � n(x) < 0}. Other boundary conditions for u will
be considered in Section 4.2. We take f 2 (L2(X))2, g 2 (H1/2(oX))2

and sD 2 L2
symð@X

�Þ, with:

L2
symðxÞ ¼ s ¼ ðsijÞ16i;j62; s ¼ sT ; sij 2 L2ðxÞ

n o
:

3. Finite element approximation

3.1. Discrete nonlinear formulation

Let ðKhÞh>0 be a family of regular meshes of X consisting of
quadrilaterals: X ¼

S
K2Kh

K: We denote by eint
h the set of internal

edges of Kh, by e@h the set of boundary edges and we put
eh ¼ eint

h [ e@h. As usually, let hK be the diameter of the quadrilateral
K and let h ¼ maxK2Kh

hK .
On every edge e belonging to eint

h , such that {e} = @K1 \ @K2, we
define once and for all a unit normal ne. For a given function u with
ujKi
2 CðKiÞ ð1 6 i 6 2Þ, we define on e:uin(x) = lime&0u(x � ene),

uex(x) = lime&0u (x + ene) as well as the jump [u] = uin � uexand
the average fug ¼ 1

2 ðuin þuexÞ. If e 2 e@h;n is the outward unit nor-
mal and [u] is the trace of u. We agree to denote the L2(x)-orthog-
onal projection of a given function u 2 L2(x) on the polynomial
space Pkðk 2 NÞ by px

k u. As usually, we denote by u� = min{0,u}
the negative part of u and we set u+ = u � u�. We denote by c
any constant independent of h, g and the stabilization parameters.
We shall use the notation s : h ¼

P2
i;j¼1sijhij.

We approach the velocity by nonconforming finite elements of
Rannacher–Turek (see [14]) whose degrees of freedom are the mean
values across the edges, and the pressure and the stress tensor by to-
tally discontinuous piecewise functions. Let bK ¼ ½�1; 1� � ½�1; 1�;
WK : bK ! K the bilinear one-to-one transformation and bQ rot

1 ¼ vect
f1; x̂; ŷ; x̂2 � ŷ2g. Then we define the space QK ¼ fv; v �WK 2 bQ rot

1 g
and we introduce the discrete spaces:

Vh ¼ fvh 2 ðL2ðXÞÞ2; vh jK 2 ðQKÞ2 8K 2Kh;

1
jej

Z
e
½vh�ds ¼ 0 8e 2 eint

h g;

Vg
h ¼ fvh 2 Vh;

Z
e

vhds ¼
Z

e
gds 8e 2 e@hg;

Qh ¼ fqh 2 L2
0ðXÞ; qh jK 2 P0 8K 2Khg;

Xh ¼ hh 2 L2
symðXÞ; ðhhÞjK 2 P0 8K 2Kh

n o
:

We consider the following discrete formulation:

ðuh;ph; shÞ 2 Vg
h � Q h � Xh

ac;dðuh;vhÞ þ bðph;vhÞ
þc0ðvh; shÞ ¼ f ðvhÞ 8vh 2 V0

h

bðqh;uhÞ ¼ 0 8qh 2 Qh

cðuh; sh; hhÞ þ dðsh; hhÞ ¼ lðhhÞ 8hh 2 Xh:

8>>>>>><>>>>>>:
ð2Þ

The previous forms are defined by:

ac;dð�; �Þ ¼ a0ð�; �Þ þ cJð�; �Þ þ dRð�; �Þ;

bðqh;vhÞ ¼ �
X

K 2 Kh

Z
K

qhr � vh dx;

cð�; �; �Þ ¼ �2g c0ð�; �Þ þ c1ð�; �; �Þ � c2ð�; �; �Þ;
dð�; �Þ ¼ d0ð�; �Þ þ d1ð�; �Þ;

f ðvhÞ ¼
X

K2Kh

Z
K

f � vh dx;

lðhhÞ ¼ �
X

e2e@
h
\@X�

Z
e
ðuh � nÞ�sD : hh ds;

where

c0ðsh;vhÞ ¼
X

K2Kh

Z
K
sh : DðvhÞdx;

c2ðuh; sh; hhÞ ¼ k
X

K2Kh

Z
K
ðshruT

h þruhshÞ : hh dx;

d0ðhh; shÞ ¼
X

K2Kh

Z
K

hh : sh dx;

d1ðsh; hhÞ ¼
k

2g
X

K2Kh

Z
K
ðshshÞ : hh dx:

The form c1(�, �; �) approximates the convective term u � rs. We
extend the approach of Lesaint–Raviart [10] for constant vectors u
to the present nonconforming approximation of the velocity. Thus
we approach

R
X u � rs : hdx by �

P
e2eh

R
efuh � neg�½sh� : hin

h ds: Final-
ly, an integration by parts together with the fact that pK

0r � uh ¼ 0
for any K 2Kh allow us to write the previous term as follows:

c1ðuh; sh; hhÞ ¼ k
X
e2eh

Z
e

Feðsh;uh;neÞ : ½hh�ds;

where Feðsh;uh;neÞ ¼ fuh � negþsin
h þ fuh � neg�sex

h is the numerical
flux. We take:

a0ðuh;vhÞ ¼
X

K2Kh

Z
K

q
2
ðuh � ruh � vh � uh � rvh � uhÞdx:

The additional forms J(�, �) and R(�, �) ensure the discrete coerciv-
ity and are defined by:

Jðuh;vhÞ ¼ g
X
e2eint

h

1
jej

Z
e
½pe

1ðuh � neÞ�½pe
1ðvh � neÞ�ds;

Rðuh;vhÞ ¼ g
X

K2Kh

Z
K
ðDðuhÞ � pK

0 DðuhÞÞ : DðvhÞdx:

The stabilization parameters c, d are independent of h.
Another possibility for the approximation of viscoelastic flows

is to introduce the strain rate tensor d = D(u) as a fourth unknown
and to split the stress tensor s (see [7] for the DEVSS method). Then
the elimination of d at the discrete level yields a three-fields for-
mulation with an additional term similar to our regularization
term R(�, �).

The nonlinear problem (2) is solved by Newton’s method.
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