
An implicit MacCormack scheme for unsteady flow calculations

J. Fürst ⇑, P. Furmánek
Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo nam. 13, 121 35 Praha, Czech Republic

a r t i c l e i n f o

Article history:
Received 30 April 2010
Received in revised form 21 September
2010
Accepted 27 September 2010
Available online 8 October 2010

Keywords:
FVM
Implicit method
Arbitrary Lagrangian–Eulerian method
Unsteady flows

a b s t r a c t

This paper describes the implicit MacCormack scheme [1] in finite volume formulation. Unsteady flows
with moving boundaries are considered using arbitrary Lagrangian–Eulerian approach.

The scheme is unconditionally stable and does not require solution of large systems of linear equations.
Moreover, the upgrade from explicit MacCormack scheme to implicit one is very simple and straightfor-
ward.

Several computational results for 2D and 3D flows over profiles and wings are presented for the case of
inviscid and viscous flows.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The explicit MacCormack scheme equipped with proper artificial
viscosity terms proved very good accuracy and efficiency in many
industrial applications, especially in the case of inviscid compress-
ible flows. It has been applied successfully for calculations of
transonic flows over profiles and wings [2], or through turbine cas-
cades [3].

The main drawback of the explicit scheme is its time-step limita-
tion due to stability condition. It becomes more important for un-
steady flows, where the global time-scale (e.g. period of oscillation
of a wing) can be much larger than the time-step, and for the
high-Reynolds viscous flows, where the mesh refinement in bound-
ary layers results in extremely small time-steps. A computation with
explicit scheme requires in such cases big amount of computer time
[4].

The goal of this work is to re-formulate the implicit MacCor-
mack’s finite-difference scheme given in [1] finite volume frame-
work considering the arbitrary Lagrangian–Eulerian method. The
resulting scheme combines advantages of the explicit method (sec-
ond order accuracy, simplicity of implementation) with the power
of implicit methods (unconditional stability).

2. Implicit MacCormack scheme for scalar problem

Before describing the final method for viscous flows in arbitrary
Lagrangian–Eulerian formulation, a simple model initial value
problem is considered:
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with an initial condition u(x,0) = u0(x).
The explicit MacCormack scheme is realized in two steps:
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The explicit scheme is stable under CFL condition
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The implicit scheme is obtained by replacing one-sided differ-
ences in convective terms (those with factor a) in predictor (2) by
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and the second order differences in viscous terms by
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and similarly for corrector (4)
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The final implicit finite-difference scheme is then (see [1]):
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Note that the predictor step is evaluated starting at the greatest
index i using an appropriate boundary condition (e.g. dunþ1=2

N ¼ 0)
and going to lowest index. The corrector step is evaluated in the
similar manner starting with boundary condition for lowest index
and going to greatest one.

The linear scheme is unconditionally stable provided that the
explicit/implicit blending parameter k is chosen such that
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The conservativity of the scheme can be easily proven by sum-
ming the solution over an index interval i 2 [p,q], i.e.Xq
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Therefore, the total change of the solution over interval p, q in
predictor is caused only by a fluxes through both interval ends
(first and second parenthesis in last term). Similar is true for
corrector.

One can easily see that all three steps in predictor can be eval-
uated together during one backward sweep through the mesh, i.e.
it is not necessary to solve any system of linear equations. The
same is valid for the corrector, which can be again realized by
one forward sweep.

The choice of k ensures that the scheme can switch to explicit
one whenever the stability condition (6) is satisfied.

In order to get some insight on the properties of the implicit
scheme we perform the Fourier analysis. Assume

un
i ¼ Cn expðIkDxiÞ; ð19Þ

where k is the (real) wave-number and I ¼
ffiffiffiffiffiffiffi
�1
p

. Plugging this for-
mula into the scheme and using the computer algebra system Max-
ima the complex amplification factor C has been computed. The
final form of C is quite complicated to analyze, nevertheless it is
possible to expand the formula into power series of Dx and Dt up
to third order:

ReðCÞ ¼ 1� k2lDt þ k4l2 � k2a2

2
Dt2

þ
l Dx2

Dt2 þ 6lk Dx
Dt þ 12lk2

12
k4Dt3 þ � � � ; ð20Þ

ImðCÞ ¼ �kaDt þ k3alDt2 þ
a Dx2

Dt2 þ 6ak Dx
Dt þ 6ak2

6
k3Dt3 þ � � � ð21Þ

Plugging the harmonic solution uðx; tÞ ¼ cðtÞ expðIkxÞ into the ori-
ginal equation one gets
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and finally
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Direct calculation gives
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Comparing Eqs. (20), (21) and (24), (25) one see that the implicit
scheme is second order accurate. Moreover, the implicit part intro-
duces additional terms (with respect to modified equation of expli-
cit MacCormack scheme) corresponding to
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3. Numerical solution of simple model problem

Before going to full Euler or Navier–Stokes equations we present
some preliminary results for the case of simple scalar linear initial
value problem for Eq. (1). We assume a discontinuous initial condi-
tion u(x,0) = 1 for x 2 [0.25,0.5] and 0 otherwise, and we compute
the solution in time t = 0.25. Fig. 1 shows the numerical solution ob-
tained with Dx = 0.001 obtained with different aDt/Dx ratios. The
results show some oscillations arising at the discontinuities, never-
theless the scheme is still stable. Note that the oscillations in the
vicinity of the discontinuities can be suppressed by using an appro-
priate artificial viscosity (e.g. TVD damping [5]).

4. The implicit scheme in finite volume formulation

The original finite-difference scheme is extended for 2D/3D
Euler or Navier–Stokes equations using finite volume formulation.
The so called arbitrary Lagrangian–Eulerian method is used for the
case of moving meshes. Assume standard Navier–Stokes equations
for compressible flows in 2D in the conservative form
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