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a b s t r a c t

Numerical weather prediction (NWP) centres use numerical models of the atmospheric flow to forecast
future weather states from an estimate of the current state. Variational data assimilation (VAR) is used
commonly to determine an optimal state estimate that miminizes the errors between observations of
the dynamical system and model predictions of the flow. The rate of convergence of the VAR scheme
and the sensitivity of the solution to errors in the data are dependent on the condition number of the Hes-
sian of the variational least-squares objective function. The traditional formulation of VAR is ill-condi-
tioned and hence leads to slow convergence and an inaccurate solution. In practice, operational NWP
centres precondition the system via a control variable transform to reduce the condition number of
the Hessian. In this paper we investigate the conditioning of VAR for a single, periodic, spatially-distrib-
uted state variable. We present theoretical bounds on the condition number of the original and precon-
ditioned Hessians and hence demonstrate the improvement produced by the preconditioning. We also
investigate theoretically the effect of observation position and error variance on the preconditioned sys-
tem and show that the problem becomes more ill-conditioned with increasingly dense and accurate
observations. Finally, we confirm the theoretical results in an operational setting by giving experimental
results from the Met Office variational system.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Variational data assimilation (VAR) is popularly used in numer-
ical weather and ocean forecasting to combine observations with a
model forecast in order to produce a ‘best’ estimate of the current
state of the system and enable accurate prediction of future states.
The estimate minimizes a weighted nonlinear least-squares mea-
sure of the error between the model forecast and the available
observations and is found using an iterative optimization algo-
rithm. Under certain statistical assumptions the solution to the
variational data assimilation problem, known as the analysis, yields
the maximum a posteriori Bayesian estimate of the state of the sys-
tem [7].

In practice an incremental version of VAR is implemented in
many operational centres, including the Met Office [11] and the
European Centre for Medium-Range Weather Forecasting
(ECMWF) [10]. This method solves a sequence of linear least-
squares approximations to the nonlinear least-squares problem

and is equivalent to an approximate Gauss–Newton method for
determining the analysis [6]. Each approximate linear least-
squares problem is solved using an ‘inner’ gradient iteration meth-
od, such as the conjugate gradient method, and the linearization
state is then updated in an ‘outer’ iteration loop.

The rate of convergence of the inner loop of the VAR iteration
scheme and the sensitivity of the analysis to perturbations in the
data of the problem are proportional to the condition number, that
is, the ratio of the largest to the smallest eigenvalue, of the Hessian
of the linear least-squares objective function [3]. Experimental re-
sults indicate that in operational systems the Hessian is ill-condi-
tioned, with undesirable features [8]. Operationally the system is
preconditioned by transforming the state variables to new vari-
ables where the errors are assumed to be approximately uncorre-
lated. Preconditioning reduces the sensitivity of the problem to
be solved and hence enables a more accurate analysis to be com-
puted [3]. Experimental comparisons have demonstrated that
operationally the preconditioning significantly improves the speed
and accuracy of the assimilation scheme [2,8].

A variety of explanations are offered in the literature for the ill-
conditioning of the VAR problem and for the benefits of precondi-
tioning in the operational system [9,1,12]. In this paper we exam-
ine the conditioning and preconditioning of the variational
assimilation method theoretically. We give expressions for bounds
on the conditioning of the Hessian of the problem in the case of a
single, periodic, spatially-distributed system parameter. It is

0045-7930/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compfluid.2010.11.025

⇑ Corresponding author. Tel.: +44 0 118 378 8988; fax: +44 0 118 931 3423.
E-mail address: n.k.nichols@reading.ac.uk (N.K. Nichols).

1 The work of this author was supported by an EPSRC CASE Award with the Met
Office. The author is also grateful for support from the European Science Foundation
OPTPDE Network on Optimization with PDE Constraints.

2 The work of these authors was supported in part by the NERC National Centre for
Earth Observation.

Computers & Fluids 46 (2011) 252–256

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid

http://dx.doi.org/10.1016/j.compfluid.2010.11.025
mailto:n.k.nichols@reading.ac.uk
http://dx.doi.org/10.1016/j.compfluid.2010.11.025
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


assumed that the errors in the initial background states (model
forecast) have a Gaussian correlation structure, although other
forms of the error correlation structure can be analysed using the
same theory. We consider three questions: (i) how does the condi-
tion number of the Hessian depend on the length-scale in the cor-
relation structures? (ii) how does the variance of the observation
errors affect the conditioning of the Hessian? and (iii) how does
the distance between observations, or density of the observations,
affect the conditioning of the Hessian?

In the next section we introduce the incremental variational
assimilation method. In Section 3 we give bounds on the condition-
ing of the problem and examine our three questions. In Section 4
we present experimental results obtained using the Met Office
Unified Model supporting the theory and in Section 5 we summa-
rize the conclusions. In this paper we present results only for the
3D-variational method, but our techniques can be extended to
the 4D-variational scheme and will be discussed in a subsequent
paper.

2. Variational data assimilation

The aim of the variational assimilation problem is to find an
optimal estimate for the initial state of the system x0 (the analysis)
at time t0 given a prior estimate xb

0; (the background) and observa-
tions yi at times ti, subject to the nonlinear forecast model given by

xi ¼Mðti; ti�1; xi�1Þ; ð1Þ
yi ¼HiðxiÞ þ di; ð2Þ
for i = 0, . . ., n. Here M and Hi denote the evolution and observation
operators of the system. The errors ðx0 � xb

0Þ in the background and
the errors di in the observations are assumed to be random with
mean zero and covariance matrices B and Ri, respectively. The
assimilation problem is then to minimize, with respect to x0, the
objective function

Jðx0Þ¼
1
2
ðx0�xb

0Þ
T B�1ðx0�xb

0Þþ
1
2

Xn

i¼0

ðHiðxiÞ�yiÞ
T R�1

i ðHiðxiÞ�yiÞ;

ð3Þ

subject to the model forecast Eqs. (1) and (2). If observations are gi-
ven at several points ti, i = 0, 1, . . ., n over a time window [t0, tn] with
n > 0, the assimilation scheme is known as the four-dimensional
variational method (4DVar). If observations are given only at the
initial time with n = 0, then the optimization problem reduces to
the three-dimensional data assimilation problem (3DVar).

In practice, to improve the computational efficiency of the var-
iational assimilation procedure, a sequence of linear least-squares
approximations to the nonlinear least-squares problem (3) is
solved. Given the current estimate of the analysis x0, the nonlinear
objective function is linearized about the corresponding model tra-
jectory xi, i = 1, . . ., n, satisfying the nonlinear forecast model. An
increment dx0 to the current estimate of the analysis is then calcu-
lated by minimizing the linearized least-squares objective function
subject to the linearized model equations. The linear least-squares
minimization problem is solved in an inner loop by a gradient iter-
ation method. The current estimate of the analysis is then updated
with the computed increment and the process is repeated in the
outer loop of the algorithm. This data assimilation scheme is
known as incremental variational assimilation.

In each outer loop the incremental scheme minimizes, with re-
spect to dx0, the current linearized least-squares objective func-
tion, which may be written as

~J½dx0� ¼
1
2
½dx0 � ðxb

0 � x0Þ�T B�1½dx0 � ðxb
0 � x0Þ�

þ 1
2
ðbHdx0 � d̂ÞT bR�1ðbHdx0 � d̂Þ; ð4Þ

subject to the linearized model equations

dxi ¼ Mðti; ti�1Þdxi�1; ð5Þ

where

bH ¼ HT
0; ðH1Mðt1; t0ÞÞT ; . . . ; ðHnMðtn; t0ÞÞT

h iT
;

d̂T ¼ dT
0;d

T
1; . . . ;dT

n

h i
; with di ¼ yi �HiðxiÞ:

The matrices M(ti, t0) and Hi are linearizations of the evolution and
observation operators Mðti; t0;x0Þ and HiðxiÞ about the current esti-
mated state trajectory xi, i = 0, . . ., n and bR is a block diagonal matrix
with diagonal blocks equal to Ri.

The minimizer of (4) is also the solution to r eJ ¼ 0, which may
be written explicitly as the linear system

ðB�1 þ bHT bR�1 bHÞdx0 ¼ B�1ðxb
0 � x0Þ þ bHT bR�1d̂: ð6Þ

Iterative gradient methods are used to solve (4), or equivalently (6).
The gradients are found by an adjoint procedure.

3. Conditioning of the assimilation problem

A measure of the accuracy and efficiency with which the data
assimilation problem can be solved is given by the condition num-
ber of the Hessian matrix

A ¼ ðB�1 þ bHT bR�1 bHÞ ð7Þ

of the linearized objective function (4). Our aim here is to present
explicit bounds on the condition number of A and investigate its
properties in terms of the background and observation error covari-
ance matrices B and bR:

The condition number of the Hessian, which is a square, sym-
metric, positive definite matrix, is defined in the L2-norm by

jðAÞ ¼ jjAjj2jjA
�1jj2 �

kmaxðAÞ
kminðAÞ

; ð8Þ

where k(A) denotes an eigenvalue of the matrix. The condition
number measures the sensitivity of the solution to the linearized
least-squares problem (4), or equivalently the solution to the gradi-
ent Eq. (6), to perturbations in the data of the problem. If the con-
dition number of the Hessian, j(A), is very large, the problem is
‘ill-conditioned’ and, even for small perturbations to the system,
the relative error in the solution may be extremely large. For the
gradient methods that are commonly used to solve the problem,
such as the conjugate gradient method, the rate of convergence
then may also be very slow.

Here we consider specifically the conditioning of the 3DVar lin-
earized least-squares problem. In this case observations are given
at only one point in time and bH ¼ H � H0. We consider in theory
the case of a single periodic system parameter with background er-
ror variance r2

b and uncorrelated observation errors with variance
r2

o :

3.1. Conditioning of the background error covariance matrix

We write the background error covariance in the form B ¼ r2
bC;

where C denotes the correlation structure of the background er-
rors. The condition number j(B) then equals the condition number
j(C). We assume that the correlation structure is homogeneous,
where the correlations depend only on distance between states
and not position. Under these conditions the correlation matrices
used commonly in practice have a circulant structure [4], which
we exploit to obtain our theoretical bounds. For example, the
Gaussian, Markov and SOAR correlation matrices have this struc-
ture, as do those based on Laplacian smoothing. A circulant matrix
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