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a b s t r a c t

A moving mesh approach to the numerical modelling of problems governed by nonlinear time-dependent
partial differential equations (PDEs) is applied to the numerical modelling of glaciers driven by ice diffu-
sion and accumulation/ablation. The primary focus of the paper is to demonstrate the numerics of the
moving mesh approach applied to a standard parabolic PDE model in reproducing the main features of
glacier flow, including tracking the moving boundary (snout). A secondary aim is to investigate waiting
time conditions under which the snout moves.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction/Background

In this paper we take a standard one-dimensional PDE model of
a glacier and discretise it using a finite difference moving mesh
method. The aim is to show that the numerical scheme can repro-
duce the features of the model and in particular handle the phe-
nomenon of waiting time which is a known feature of glacier
movement.

Computational studies of glaciers are particularly challenging
to the modeller. Although ice sheet models are well-established,
prediction of profiles and grounding movement are infeasible
analytically and difficult to achieve numerically, see Payne and
Vieli [5]. Ice moves in a similar manner to a viscous fluid, though
with a very high viscosity approximately 1015 times that of water
[2]. However, viscous theory cannot solely be used to describe
flow, since glaciers are unique in experiencing basal sliding. This
can be caused in two ways, via friction where the ice makes
contact with the ground as it is flowing, or geothermal heat
below the surface.

In order for glaciers to form they first need enough snow over the
winter period to be able to survive through the summer, i.e. more
accumulation of snow than is lost through melting and evaporation.
This needs to be repeated over a number of successive years, and as
more snow builds up, the weight increases and pressure com-
presses the firn (old snow) into ice. Once this ice is thick enough,
gravity, amongst other forces, causes the ice to flow. This is a long,
complex process which takes less time in regions where tempera-
ture changes quicker, such as the Alps and North America [2].

On a global scale, ice quantities vary considerably. At present
glaciers make up around 2% of the Earths water, but during an
ice age this vastly increases. Either way they have a large impact
on the climate system, and are becoming increasingly affected by
climate change. If all this ice melted into the oceans, there would
be a sea level rise of around 70 m. We are interested in glaciers
for more than just the climate change reasons, as they can have a
large effect on the local terrain, causing events such as landslides
and flash floods.

We discritise a standard PDE model of glacier movement in a
moving frame of reference, on a moving mesh, using a local mass
balance principle to define a velocity in order to move the mesh.
We note that, as in other nonlinear diffusion problems, glaciers
experience a waiting time before they begin to move. We suggest
a mechanism whereby waiting ends and the snout moves. Finally,
consideration is given to ways the model may be extended, and the
impacts that these extensions may have on the results we have ob-
tained, leading the way to potential further work to be undertaken
on the problem.

One of the main concepts to take into consideration when
modelling glaciers is the idea of mass balance, and where on
the glacier mass is gained or lost. Generally, near the source of
the glacier, the accumulation of snow is greater than the ablation
(melting/evaporation), so the mass increases. Further away the
ablation becomes greater than the accumulation, and the mass
decreases. However ice can build up in the lower zone due to
ice flow coming from the glacier’s upper zone. The front-most
end of the glacier is known as the snout, which rarely moves
straight away; it waits until the velocity behind it is great enough
to push it down the mountain. It is this feature which is of special
interest.
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2. Model description

A standard PDE model for glaciers was proposed by Oerlemans
[3] in 1984, with a flat bed occupying the region x 2 [0,b(t)] as
shown in Fig. 1. Let H(x, t) represent the thickness of the ice. At
the ends of this domain we have the boundary conditions, @H

@x ¼ 0
at the fixed point x = 0, and H = 0 at the moving boundary x = b(t).

In one dimension the continuity equation for ice can be written
as

@H
@t
¼ � @ðHuÞ

@x
þ sðxÞ; ð1Þ

where H is the ice thickness, s(x) = sa(x) � sb(x), with sa the accumu-
lation rate of snow and sb the basal melting rate.

2.1. Mass balance

An important property concerns the integral of the ice thickness
over the whole domain (the volume), i.e.Z bðtÞ

0
Hðx; tÞdx ¼ hðtÞ; say: ð2Þ

From (1), using Leibniz’s integral rule, and applying the boundary
conditions

d
dt

Z bðtÞ

0
Hðx; tÞdx ¼

Z bðtÞ

0

@H
@t

dxþ HðbðtÞ; tÞdbðtÞ
dt

¼ �
Z bðtÞ

0

@

@x
½Hu�dxþ

Z bðtÞ

0
sðxÞdx

¼ �½Hu�bðtÞ0 þ
Z bðtÞ

0
sðxÞdx ¼

Z bðtÞ

0
sðxÞdx; ð3Þ

the physical equivalent of which states that any change in the inte-
gral of ice thickness over the whole glacier, or equivalently any
change in the ice volume, is due only to the snow term, which rep-
resents the net accumulation/ablation of snow over the whole
glacier.

2.2. Model velocity

The model velocity u is defined as the mean depth integrated
horizontal velocity, and assuming lamellar flow it is given by [9]

u ¼ 2AH
nþ 2

sn
dx; ð4Þ

with sdx the stress term, and parameters A and n taken from Glen’s
flow law, an established general law for steady state ice deforma-
tion [6]. From Van Der Veen [9] the driving stress is given by

sdx ¼ �qgH
@h
@x
; ð5Þ

with q the ice density, g representing gravity, and h equal to ice
thickness plus the surface elevation. On a flat bed there is no surface
elevation so we may put h = H. From (4) and (5) we get an equation
for the depth integrated horizontal velocity

u ¼ � 2AH
nþ 2

qngnHn @H
@x

� �n

: ð6Þ

The parameters A, n, q and g are set as constant to simplify the mod-
el, giving

u ¼ �cHnþ1 @H
@x

� �n

; ð7Þ

where c is a single positive constant parameter.
Expressing the velocity in this form may present problems

when dealing with the boundary condition H = 0 at x = b(t), appar-
ently giving a zero velocity at the right-hand boundary and result-
ing in a glacier that will never move, which we know physically is
not the case. However it is perfectly possible for u to be non-zero as
long as Hnþ1Hn

x is finite, which requires Hx to be infinite.
For the most part though we are not concerned with physical

values for the variables, but more with the numerical behaviour
of the moving mesh approach, hence x and H are non-dimensiona-
lised, with ~x ¼ 10�6x and eH ¼ 10�3H. We drop the tilde notation for
convenience. From Roberts [7] we set c = 0.000022765 in standard
SI units, and n = 3. Substituting the velocity into Eq. (1) we get the
model equation

@H
@t
¼ c

@

@x
H5H3

x

h i
þ sðxÞ; ð8Þ

which incorporates nonlinear diffusion and a source term. In this
paper we set sb(x) � 0, making s(x) = sa(x), although the non-zero
basal melting case is considered in [4].

3. Snout behaviour

From (7), with n = 3 we derive the useful form

u ¼ �cðH4=3HxÞ3 ¼ �
27

343
c½ðH7=3Þx�

3
: ð9Þ

When expressing the velocity in this manner it is interesting to sub-
stitute an expression for H that has the right general shape and sat-
isfies the boundary conditions, i.e.

H ¼ ð1� x2Þa ð10Þ

where a > 0, for which

H
7
3 ¼ ð1� x2Þ

7a
3

ðH7=3Þx ¼ �2x:
7a
3
ð1� x2Þ

7a
3�1

: ð11Þ

The velocity (9) then has some interesting properties as x ? 1,
depending on the value of a.

Case 1 :
7a
3
> 1;) ðH7=3Þxis zero ð12Þ

Case 2 :
7a
3
< 1;) ðH7=3Þxis infinite ð13Þ

Case 3 :
7a
3
¼ 1;) ðH7=3Þxis finite ð14Þ
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Fig. 1. One-dimensional domain.
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