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a b s t r a c t

A spatial semi-discretization is developed for the two-dimensional depth-averaged shallow water equa-
tions on a non-equidistant structured and staggered grid. The vector identities required for energy con-
servation in the continuous case are identified. Discrete analogues are developed, which lead to a finite-
volume semi-discretisation which conserves mass, momentum, and energy simultaneously. The key to
discrete energy conservation for the shallow water equations is to numerically distinguish storage of
momentum from advective transport of momentum. Simulation of a large-amplitude wave in a basin
confirms the conservative properties of the new scheme, and demonstrates the enhanced robustness
resulting from the compatibility of continuity and momentum equations. The scheme can be used as a
building block for constructing fully conservative curvilinear, higher order, variable density, and non-
hydrostatic discretizations.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

When systems of partial differential equations are discretized,
properties of the continuous equations are often inadvertently sac-
rificed. One pertinent example is that many finite-difference and fi-
nite-volume discretizations of the shallow water equations are not
energy conserving (e.g. [1–3]), even in absence of friction and en-
ergy fluxes through domain boundaries. Other examples are
schemes often used for geophysical applications, which conserve
mass, energy, potential enstrophy, but not momentum (e.g. [4]),
or a recently developed curl-preserving discretisation of the shal-
low water equations [5] which does not conserve energy. In gen-
eral, one cannot avoid compromises in the discretisation of the
continuous system; which properties are to be preserved depends
on (1) the dominating physics of the problem under consideration,
and (2) a knowledge of the robustness and accuracy of the
discretisation.

The wider aim of this work is to develop numerical schemes
suitable for simulating thee-dimensional (3-D) turbulent flows
with a free surface. In 3-D turbulence, energy cascades from large
scales to ever smaller scales until it is converted into heat by vis-
cosity. Therefore, it is important to design numerical schemes

which preserve the subtle balances of energy transfer between
scales. In this paper, we take a first step in this direction by deriv-
ing a scheme for the shallow water equations which conserves
mass, momentum, and energy simultaneously. Whilst mass and
momentum conservation is straightforward to enforce using a fi-
nite-volume discretization, energy conservation is much harder
to achieve. Indeed, energy conservation cannot be enforced di-
rectly, and requires a compatible discretization of the continuity
and momentum equations. From a numerical point of view, energy
conservation is a desirable property for the numerical stability and
robustness of the discretization, because the velocities will remain
bounded.

It has long been recognized that energy conservation is an
important issue in numerical simulation. Fully conservative
schemes for the solution of the incompressible Navier–Stokes
equations on staggered Cartesian grids (in particular in the context
of direct numerical and large-eddy simulation) have been derived
for finite difference [6], finite volume [7] and compact difference
methods [8]. Recently, a collocated scheme was developed for
the incompressible Navier–Stokes equations which is fully conser-
vative [9]. However, none of these schemes can be applied to the
shallow water equations, because they were not designed for
time-dependent cell volumes. In this paper, we seek a momentum-
and energy-preserving discretization of the two-dimensional (2-D)
shallow water equations on a Eulerian staggered grid.
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The 2-D depth-averaged shallow water equations in the ab-
sence of friction in conservative form are given by

@h
@t
þr � ðhuÞ ¼ 0; ð1Þ

@hu
@t
þr � ðhuuÞ þ ghrf ¼ 0: ð2Þ

Here h is the water depth, u = [u,v]⁄ is the depth-averaged fluid
velocity, f is the free surface elevation relative to the water interface
at rest and g is the gravitational acceleration. The bed is located at
z = �d(x,y) and the water depth is h = f + d.

We define a scalar product as

hu;vi �
Z

X
u � vdX; ð3Þ

where X is the fluid domain. Assuming that the fluxes on the do-
main boundary @X vanish, the total mass h1, hi, momentum h1,
hui and twice the energy hu, hui evolve according to

d
dt
h1;hi ¼ 0; ð4Þ

d
dt
h1;hui ¼ h1; ghrdi; ð5Þ

d
dt
ðhu;hui þ ghf; fiÞ ¼ 0: ð6Þ

Hence, in the situation that the bed is flat, mass, momentum and
energy are conserved. Using a finite-volume discretization, mass
and momentum conservation can be enforced explicitly. However,
energy conservation can only be ensured by choosing the discreti-
zation such that two important integral relations pertaining to
advection and pressure are satisfied. These relations will be derived
below.

The rate of change of twice the total kinetic energy hu, hui is de-
fined by

d
dt
hu;hui ¼ @hu

@t
;u

� �
þ u;

@hu
@t

� �
� u � u; @h

@t

� �
: ð7Þ

Substituting Eq. (2) into the expression above, and assuming that
boundary fluxes vanish or cancel, results in

d
dt
hu;hui ¼ �hAu;ui � hu;Aui � u;

@h
@t

u
� �

� hghrf;ui � hu; ghrfi:

ð8Þ

Here, A is the advective operator, defined as Av ¼ r � ðhuvÞ. Using
partial integration and making use of Eq. (1), it follows that

hAu;vi ¼ �hu;Avi þ hu � v;r � ðhuÞi; ð9Þ

hrf; hui þ hhu;rfi ¼ d
dt
hf; fi: ð10Þ

Substitution of the identities (9) and (10) into Eq. (8) results in Eq.
(6).

To achieve energy conservation for the numerical method, dis-
crete analogues of (9) and (10) need to be satisfied. This approach
falls within the category of mimetic discretizations [10,11]; see
[7,12] for derivations using this approach for the incompressible
Navier–Stokes equations.

2. A mass, momentum and energy conserving discretization

Recently, a shift transformation framework was developed,
which allows one to construct mass, momentum, and energy con-
serving discretizations on staggered grids by making use of a fully
conservative discretization of the advection–diffusion equation for
a cell-centered scalar [12]. The advantage of this approach is that it
is straightforward to a construct a variance conserving scheme for

a cell-centered variable, whereas fully conservative equations on a
staggered mesh are much harder to derive.

The advection equation for a scalar is given by

@hc
@t
þr � ðhucÞ ¼ 0; ð11Þ

and a generic finite-volume discretization of Eqs. (1) and (11) is

dVðtÞ
dt
þDu ¼ 0; ð12Þ

dMðtÞcðtÞ
dt

þAðtÞc ¼ 0: ð13Þ

Here, u and c are vectors containing the velocity and concentration,
respectively. The cell volume vector V is defined as V = Xh, where X
is a diagonal matrix containing the cell areas. The matrices D and A

are the discrete divergence and advection operators, respectively; M
is a diagonal mass matrix with diag(M) = V. The primary difference
between Eqs. (12) and (13) and an incompressible formulation is
that the mass matrix M is now time-dependent and the depth-
averaged velocity field is not divergence free.

The time rate of change of the total variance c⁄Mc is

d
dt

c�Mc ¼ dMc
dt

� ��
cþ c�

dMc
dt
� c�

dM
dt

c ¼ �c� AþA� þ dM
dt

� �
c;

ð14Þ

which is a discrete equivalent of Eq. (8) for a scalar. Requiring that
the total variance be conserved imposes the following constraints
on the discrete advective operator:

diagðAÞ ¼ � 1
2 diag dM

dt

� �
¼ 1

2Du ðdiagonal elements:Þ;
A ¼ �A� ðoff-diagonal elements:Þ:

(

ð15Þ

Hence, the off-diagonal terms need to be skew-symmetric, and the
divergence of the volume flux features on the diagonal of the oper-
ator. In the case of the incompressible Navier–Stokes equations, the
field is divergence free, which results in a strictly skew-symmetric
advective operator.

Although the argument above is valid for both structured and
unstructured grids, we specialize to a non-equidistant rectangular
staggered C-grid [13,14] (Fig. 1). The centers of the north and east
cell faces are located at xi, and yj, respectively. The cell center is
located at (xi�1/2, yj�1/2). Fractional indices denote a non-weighted
interpolation Xiþ1=2 � 1

2 ðXi þ Xiþ1Þ, where X is an arbitrary field
variable. The discrete variables are defined as ui,j = u(xi, yj�1/2),
vi,j = v(xi�1/2, yj), and hi,j = h(xi�1/2, yj�1/2).

ζ

Δ

Δ

Fig. 1. Definition sketch of the grid and the dependent variables.
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