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ABSTRACT

Accurate solutions of oscillatory Stokes flows in convection and convective flows in porous media are
studied using the method of fundamental solutions (MFS). In the solution procedure, the flows are rep-
resented by a series of fundamental solutions where the intensities of these sources are determined by
the collocation on the boundary data. The fundamental solutions are derived by transforming the govern-
ing equation into the product of harmonic and Helmholtz-type operators, which can be classified into
three types depending on the oscillatory frequencies of temperature field. All the velocities, the pressure,
and the stresses corresponding to the fundamental solutions are expressed explicitly in tensor forms for
all the three cases. Three numerical examples were carried out to validate the proposed fundamental
solutions and numerical schemes. Then, the method was also applied to study exterior flows around a
sphere. In these studies, we derived the MFS formulas of drag forces. Numerical results were compared
accurately with the analytical solutions, indicating the ability of the MFS for obtaining accurate solutions
for problems with smooth boundary data. This study can also be treated as a preliminary research for
nonlinear convective thermal flows if the particular solutions of the operators can be supplied, which

are currently under investigations.

© 2010 Published by Elsevier Ltd.

1. Introduction

Recently, buoyant flows induced by time-periodic boundary
temperature variations have become a subject of considerable
interests. Examples include the buoyant flow in a cavity induced
by sinusoidal sidewall temperature variations [1] and others [2-
5]. When the acceleration forces dominate the nonlinear inertial
forces and the amplitude of oscillatory temperature input is small
enough, the hydrodynamic and energy equations can be linearized.
In this situation, the hydrodynamic and energy equations become
Brinkman and modified Helmholtz equations respectively if har-
monic vibrations in time are further assumed. On the other hand,
when boundary-type numerical methods [6] are applied to study
fluid dynamic problems, the linearized governing equations are
usually the first relevant subjects [7-10]. Therefore, in this paper
we are going to develope the method of fundamental solutions
(MFS) for oscillatory buoyant flows.

On the other hand, the transport phenomena in porous media
arise in many diverse fields of science and engineering, such as ci-
vil, mechanical, chemical, and petroleum engineering. Thus, the
analysis of transport phenomena in porous media is of great
importance in science and engineering. Since the original study
of Darcy [11], the transport phenomena in porous media had been
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studied extensively over years. A large amount of these studies are
based on the Brinkman extended Darcy’s model [12]. When there
are heat sources in porous media, the governing equations of
hydrodynamics and energy become Brinkman and Laplace equa-
tions, respectively. In this paper, we will also apply the MFS to this
subject.

In the last few decades, there are increasing interests in the devel-
opments of the MFS for various engineering and scientific problems.
The MFS is a boundary-type numerical method which was first
proposed by Kupradze and Aleksidze [13]. Its mathematical founda-
tions were established by Mathon and Johnston [14] and Bogomolny
[15]. Then, the MFS had been successfully applied to the elliptic
boundary value problems [16], the scattering and radiation prob-
lems[17], the evaluation of eigenvalues [ 18], and the diffusion prob-
lems [19]. In this paper, we developed the MFS formulations for
oscillatory and porous buoyant flows. The hydrodynamic equation
for both problems is Brinkman equation but the energy equations
are modified Helmholtz and Laplace equations respectively. In the
study we assume the temperature field is unaffected by the fluid mo-
tion. In other words we are going to study the particular solutions of
Brinkman equation when the buoyant temperature terms are
approximated by the fundamental solutions of energy equation
(modified Helmholtz/Laplace equation). Karageorghis and Smyrlis
[20] had made a similar study for thermoelasticity.

The MFS has also been applied to solve many problems of
fluid flows. Tsai and Young [21] applied the MFS to solve
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three-dimensional Stokes problems. In that study they solved the
vorticity transport equation and the velocity Poisson equation sep-
arately by using the MFS based on the modified Helmholtz and La-
place fundamental solutions, respectively. Studies of the MFS by
directly using the fundamental solution of hydrodynamic equation
are originated from Alves and Silvestre [22] and Tsai et al. [23] for
interior and exterior Stokes flow problems, respectively. On the
other hand, Tsai [10] applied the MFS to study transport phenom-
ena in porous media by directly using the Brinkman fundamental
solutions. In this study, we extended the MFS for the case of buoy-
ant flows in porous media.

Meanwhile Tsai et al. [24] used the unsteady fundamental solu-
tion to solve unsteady Stokes problems. However, the accuracy of
that study was sensitive with respect to the locations of sources.
Alternatively, Pozrikidis [7,8] and Shatz [9] derived the singularity
method for oscillating Stokes problems. In their studies all kinds of
sources are adopted to construct the solutions. In the recent theo-
ries of the MFS [15,22], it had been shown that simply putting the
fundamental solutions on an artificial boundary outside (or inside)
the computational domain is enough to form a dense space for all
the solutions of interior (or exterior) problems. Therefore we also
investigate the oscillatory buoyant flows based on this concept.

A brief outline of the paper is as follows. In Section 2, we intro-
duce the governing equations. Then, we derive the fundamental
solutions required for the MFS formulations in Section 3. In our
derivations, we first transform the governing equation to the prod-
uct of harmonic and Helmholtz-type operators using the Hormander
operator decomposition technique [25]. Depending on the oscilla-
tory frequencies of temperature field the product operator is classi-
fied to three types, whose fundamental solutions can be found in
literature [26]. Then, the MFS formulation is introduced in Section
4. The drag forces of exterior problems are studied in Section 5.
The numerical results are then presented in Section 6 and the
conclusions are summarized in Section 7.

2. Governing equations

For a linearized unsteady buoyant Stokes flow with the Ober-
beck-Boussinesq assumption [27,28], the mass, momentum, and
energy conservation equations are given, respectively, by Pozriki-
dis et al. [7,29]:

V-u=0
pR=—Vp+uvia-ppTg inQ (1)
%: kTV2

where Q is the study domain, u = (uiq, Uy, U3) (or @ = (u4, 1)) is the
velocity vector in 3D (or 2D), p is the pressure, T is the temperature
difference with respect to some proper reference temperature,
g=(0,0,—g) (or g =(0,—g)) is the gravity vector in 3D (or 2D), u
is the viscosity, V is the gradient operator as usual, kr is the thermal
conductivity, and g is the coefficient of thermal expansion. For con-
venience, we assume @, p, and T are harmonic function in time as
follows:

ax,t) = u(x)el

PX.t) = p(x)e"" )
T(x,£) = T(x)e"

where X = (x4, xz X3) (or X = (x1,X3)) is the spatial coordinate in 3D
(or 2D), i = v—1 is the complex unit and w is the frequency. Then
Eq. (1) becomes

V-u=0
iwpu=—Vp+ uV’u—ppTg in Q 3)
ioT = kV2T

If we further assume /% = iwpu, 0> =2, ¢=1, and « = —pfig
with |«| = «, we have

V.u=0

~Vp+uViu—22pu+alT =0 (4)

ke V2T — €02k T =0

In Eq. (4), we notice that the hydrodynamic and energy equa-
tions are oscillatory Stokes (Brinkman) and modified Helmholtz
equations, respectively.

Next, we consider a slow Brinkman-extended Darcy’s flow in
steady state with heat convection satisfying Oberbeck-Boussinesq
assumption, the mass, momentum, and energy conservation equa-
tions are given, respectively, by Brinkman et al. [12,30]:

V-u=0
~Vp + uV’u
krV2T = 0

—lu—_ppTg=0 inQ (5)

where x is the permeability coefficient and the other variables are
similar to those in the previous case. Eq. (4) can be also obtained
by assuming & =0, 2 =1 and a=—ppg In this situation the
hydrodynamic and energy equations are Brinkman and Laplace
equations, respectively.

To form a well-posed problem in addition to Eq. (4), proper
boundary conditions should be imposed:

u=u on/}
=t onTl}

T=T onTI!
T — T, onT}

(6)

where i, t, T, and T, are prescribed boundary data, n = (nq1,n,n3)
is the outward normal vector, and I'=T% 4+ Ty =TI + I} is the
boundary of the computational domain Q. It is desirable to define
the traction boundary condition t = (1, t;, t3) by

ti = ojn; (7)
with gy is the stress tensor given by

ou;  Ou;
% =P ox T o

The main task of present study is to develop the MFS formula-
tions for Egs. (4) and (6). In other words, we are going to find the
particular solutions of u and p, governed by the continuity and
momentum equation in Eq. (4) when the temperature T are
approximated by the modified Helmholtz and Laplace fundamental
solutions.

8)

3. The fundamental solutions

In the derivations, the following notation convections are uti-
lized. The index 7 varies from 1 to 3 and 1 to 4 for 2D and 3D,
respectively. On the other hand, the indices {i,j, k} take their val-
ues from 1 to 2 and 1 to 3 for 2D and 3D, respectively.

Then, we introduce the fundamental solutions required in the
MES formulations. For two dimensions, Eq. (4) can also be rewrit-
ten in matrix form as

Uq 0

~| Uz 0

L = 9
T 0 9)
p 0

where L is a matrix of differential operators defined by
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