Contents lists available at ScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

journal homepage: www.elsevier.com/locate/jpba

High-throughput determination of octanol/water partition coefficients using a *shake-flask* method and novel two-phase solvent system

CrossMark

Go Morikawa, Chihiro Suzuka, Atsushi Shoji, Yoichi Shibusawa, Akio Yanagida*

Division of Pharmaceutical and Biomedical Analysis, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

ARTICLE INFO

Article history: Received 23 June 2015 Received in revised form 14 September 2015 Accepted 16 September 2015

Keywords: Octanol/water partition coefficient Shake-flask method Two-phase solvent system Amino acids Peptides Nucleotides

ABSTRACT

A high-throughput method for determining the octanol/water partition coefficient ($P_{o/w}$) of a large variety of compounds exhibiting a wide range in hydrophobicity was established. The method combines a simple *shake-flask* method with a novel two-phase solvent system comprising an acetonitrile–phosphate buffer (0.1 M, pH 7.4)–1-octanol (25:25:4, v/v/v; AN system). The AN system partition coefficients (K_{AN}) of 51 standard compounds for which $\log P_{o/w}$ (at pH 7.4; $\log D$) values had been reported were determined by single two-phase partitioning in test tubes, followed by measurement of the solute concentration in both phases using an automatic flow injection–ultraviolet detection system. The $\log K_{AN}$ values were closely related to reported $\log D$ values, and the relationship could be expressed by the following linear regression equation: $\log D = 2.8630 \log K_{AN} - 0.1497(n = 51)$. The relationship reveals that $\log D$ values (+8 to -8) for a large variety of highly hydrophobic and/or hydrophilic compounds can be estimated indirectly from the narrow range of $\log K_{AN}$ values (+3 to -3) determined using the present method. Furthermore, $\log K_{AN}$ values for highly polar compounds for which no $\log D$ values have been reported, such as amino acids, peptides, proteins, nucleosides, and nucleotides, can be estimated using the present method. The wide-ranging $\log D$ values (+5.9 to -7.5) of these molecules were estimated for the first time from their $\log K_{AN}$ values and the above regression equation.

© 2015 Published by Elsevier B.V.

1. Introduction

The logarithm of the octanol/water partition coefficient, log $P_{o/w}$, provides information regarding the physicochemical properties of drugs and industrial chemicals. The log $P_{o/w}$ is the most widely employed descriptor of the hydrophobicity, lipophilicity, and quantitative structure-activity relationships of biological, pharmaceutical, and environmentally relevant compounds [1–4]. Over the past few decades, numerous methods for experimental determination or estimation of log $P_{o/w}$ values have been developed, the most common of which is the *shake-flask* method, in which an analyte is simply partitioned between 1-octanol and water (or aqueous buffer) phases in a flask or test tube [1]. After partitioning, the analyte concentration in both phases is quantified by off-line UV-vis absorption or other spectrometric detection or via on-line flow-injection analysis (FIA) [5,6], high-performance

* Corresponding author. E-mail address: yanagida@toyaku.ac.jp (A. Yanagida).

http://dx.doi.org/10.1016/j.jpba.2015.09.019 0731-7085/© 2015 Published by Elsevier B.V. liquid chromatography (HPLC) [7–10], or gas chromatography [7,11]. Although the traditional *shake-flask* method is reliable for direct $\log P_{o/W}$ determination, it is time-consuming, labor intensive, and requires a relatively large amount of pure analyte. More effective methods improved by incorporating modern techniques/apparatus, such as solid-phase microextraction [11], liquid–liquid microextraction [7,8], or 96-well plate formats [9,10], have recently been developed. As a striking example, Dohta et al. [10] established a high-throughput system for $\log D$ ($\log P_{o/W}$ at pH 7.4) screening in a 96-well plate using a water-plug aspiration/injection method combined with HPLC-mass spectrometry. Using this system, $\log D$ values spanning the range +5.9 to –1.9 were determined for 25 drugs.

In contrast to *shake-flask* methods, liquid–liquid countercurrent chromatography (CCC) using octanol and water as stationary and/or mobile phases is an ideal method for high-throughput direct $\log P_{o/w}$ determination. CCC permits automatic calculation of the $P_{o/w}$ from the retention time (more accurately, the retention volume) of a solute in a CCC chromatogram, without the need for manual handling of two-phase partitions, dilution, or quantifi-

Table 1

Experimentally determined $\log K_{AN}$ and literature-reported $\log D$ values of 51 standard compounds.

Compound	Measured value				Literature value
	K _{AN}	SD (n=4)	RSD %	log K _{AN}	log D ^a
Amiodarone	84.385	2.12	2.5	1.926	6.1
Tolnaftate	74.496	8.278	11.1	1.87	5.4
Clotrimazole	37.266	1.787	4.8	1.571	5.2
Diethylstilbestrol	44.712	0.604	1.4	1.65	5.07
Bifonazole	41.398	0.597	1.4	1.617	4.77
Loratadine	39.732	1.175	3	1.599	4.4
Estradiol	16.595	0.838	5	1.22	4.01
Ketoconazole	20.667	0 484	23	1 315	3.83
3 5-Dichlorophenol	9 593	0.511	53	0.982	3 68
Chlorpromazine	8 356	0.133	16	0.922	3 38
Nanhthalene	25.035	1 431	5.7	1 399	3 37
Thioridazine	12 867	0.74	5.8	1 109	3 34
Testosterone	12.007	0.344	2.9	1.105	3.24
Nifedinine	19.087	0.293	1.5	1.075	3.17
Clozanina	12.007	0.235	1.5	1.201	2.12
2 Bromoguinalina	12.091	0.285	2.2	1.11	2.02
Disponent	13.924	0.509	5.7	1.144	3.03
Diazepaili Transdon o budro obrolido	12.025	0.577	4.1	1.140	2.79
2 Chlorenheuel	12.925	0.254	2	1.111	2.54
3-Chiorophenoi	11./11	0.156	1.3	1.069	2.5
Imipramine	4.779	0.079	1./	0.679	2.4
Carbamazepine	6.106	0.072	1.2	0.786	2.19
Diltiazem	11.228	0.361	3.2	1.05	2.06
Quinoline	6.015	0.255	4.2	0.779	2.03
Dexamethasone	6.733	0.047	0.7	0.828	1.83
Lidocaine	12.615	0.338	2.7	1.101	1.71
Desipramine	2.1	0.006	0.3	0.322	1.28
Propranolol	1.805	0.039	2.1	0.257	1.26
Chloramphenicol	5.553	0.117	2.1	0.744	1.14
Alprenolol	1.694	0.032	1.9	0.229	0.97
Trimethoprim	2.208	0.051	2.3	0.344	0.63
Clonidine hydrochloride	3.523	0.042	1.2	0.547	0.62
Fluconazole	2.207	0.049	2.2	0.344	0.5
Antipyrine	2.104	0.038	1.8	0.323	0.38
Cimetidine	1.443	0.066	4.6	0.159	0.35
Pentoxifylline	2.259	0.041	1.8	0.354	0.29
Nitrofurazone	2.345	0.021	0.9	0.37	0.23
Metronidazole	1.662	0.01	0.6	0.221	-0.02
Caffeine	1.31	0.014	1	0.117	-0.07
Metoprolol	0.747	0.02	2.7	-0.126	-0.16
Thiamphenicol	2.357	0.041	1.7	0.372	-0.27
Ranitidine hydrochloride	0.875	0.012	1.3	-0.058	-0.29
Acebutolol	0.694	0.01	1.4	-0.159	-0.29
Nizatidine	1.209	0.007	0.6	0.082	-0.52
Atropine	0.488	0.017	3.4	-0.312	-0.55
Allopurinol	0.517	0.003	0.5	-0.286	-0.44
Pirenzenine	0.529	0.02	3.8	-0.276	-0.61
Disopyramide	0.922	0.003	03	-0.035	-0.66
Tianride	0.879	0.012	14	-0.056	-0.90
Procainamide	0.423	0.012	1.4	_0.374	_0.91
Terbutaline sulfate	0.225	0.005	25	-0.574	-0.31
Sotalol	0.21	0.003	2.5	-0.077	-1.35
	0.234	0.003	1.1	-0.333	-1.55

^a All log *D* values were quoted from Ref. [19].

cation of the solute concentration [12–15]. However, CCC is too time-consuming for determining $\log P_{o/W}$ values greater than +3 and/or less than -3.

Because 1-octanol is a malodorous and highly viscous solvent, other systems for high-throughput indirect $\log P_{o/w}$ estimation have been developed utilizing techniques such as reversed-phase (RP) HPLC [16–21], RP–thin layer chromatography (TLC) [2,22–24], micelle electrokinetic chromatography (MEKC) [25,26], and microemulsion electrokinetic chromatography (MEKC) [27–30]. In these chromatographic methods, linear regression is used to correlate both the logarithm of the retention factor (log *k*) and log $P_{o/w}$ parameters, although the methods are typically used with relatively simple molecules or those within a homologous series. Furthermore, these methods can be used to estimate positive log $P_{o/w}$ values (up to +6) of hydrophobic compounds, but they are not suitable for estimating negative log $P_{o/w}$ values of very hydrophilic compounds, which are poorly retained on the typical

alkyl stationary phases used with these chromatographic systems (e.g., octadecyl (C_{18}) groups, sodium dodecyl (C_{12}) sulfate (SDS) micelles, or SDS microemulsions).

To the best of our knowledge, the maximum and minimum $\log P_{o/w}$ values reported in the literature are approximately +6 (for coronene [30], DDT [3,17,26], and amiodarone [19]) and approximately -2 (for L-tyrosine [26] and acyclovir [30]), respectively. However, there are many compounds important in the pharmaceutical and life sciences research fields for which the $\log P_{o/w}$ values may be higher or lower than the currently reported maximum and minimum values. In particular, the $\log P_{o/w}$ values of highly polar bioactive compounds such as peptides, proteins, nucleotides, and related drugs have yet to be elucidated.

In this report, we describe a new high-throughput method for determining the $\log P_{o/w}$ values of an extended range of hydrophobic and/or hydrophilic compounds. The overall method combines a simple *shake-flask* method with a novel two-phase solvent system.

Download English Version:

https://daneshyari.com/en/article/7629312

Download Persian Version:

https://daneshyari.com/article/7629312

Daneshyari.com