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a b s t r a c t

We present a method for the unsteady coupling of two distinct two-phase flow models (namely the
Homogeneous Relaxation Model, and the Homogeneous Equilibrium Model) through a thin interface.
The basic approach relies on recent works devoted to the interfacial coupling of CFD models, and thus
requires to introduce an interface model. Many numerical test cases enable to investigate the stability
of the coupling method.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

We focus in this paper on the unsteady interfacial coupling of
two distinct two-phase flow models that are commonly used in or-
der to simulate water–vapor flows in nuclear power plants. We
emphasize that we only deal with a steady coupling interface that
separates the two codes. The main objective here is to prescribe
meaningful boundary conditions on each side of this coupling
interface for both codes associated with HEM and HRM models.

The Homogeneous Relaxation Model (denoted by the acronym
HRM) is a four-equation model that is widely used in two-phase
flow simulations. Most industrial codes within the nuclear commu-
nity – for instance THYC (EDF) or FLICA (CEA) – rely on this model.
This model requires computing approximations of solutions of
two mass balance equations, a total momentum equation and a gov-
erning equation for the total energy balance of the mixture. Exclud-
ing source terms, this model is under conservative form. The only
non-zero source contribution is on the right hand side of the govern-
ing equation of the liquid mass fraction. This source tends to relax
the current liquid mass fraction to the equilibrium mass fraction,
which only depends on the mean pressure and the mean density.
The underlying time scale is highly variable, and in practice it makes
the source term very stiff, which may render the computation of the
HRM model rather uneasy. Actually, the Homogeneous Equilibrium
Model (acronym HEM) precisely stands for the counterpart of the
HRM model when an equilibrium is achieved. It is thus a pure convec-
tive set of partial differential equations which govern the motion of
the total mass, the global momentum and the total energy of the
whole mixture. Both the HEM and the HRM models require defining
appropriate equations of state (referred to as the EOS in the

following) in order to account for both the ‘‘pure vapor” phase, the
‘‘pure liquid” phase but also the ‘‘mixture” phase. These EOS are usu-
ally tabulated (see [30,31,22]), but we will focus here on simplified
analytical EOS. This is essentially motivated by the fact that we do
not wish to mix numerical drawbacks due to the use of realistic
EOS and those connected with the formulation of the coupling tech-
niques. In other words, we want to be ‘‘optimal” in some sense in
terms of EOS in order to concentrate on the main drawbacks of
the coupling techniques.

In order to introduce the problem of the interfacial coupling of
two existing codes, we need to define governing equations:

@tðWÞ þ @nðFn;LðWÞÞ ¼ 0 ð1Þ

For the left code (xn ¼ x � n < 0; t > 0), respectively, for the right
code (xn > 0; t > 0):

@tðWÞ þ @nðFn;RðWÞÞ ¼ 0; ð2Þ

where n is the unit normal to the plane and steady coupling interface,
which is located at xn ¼ 0. Moreover, we assume that the two systems
on each side are hyperbolic and invariant under frame rotation.

Quite recently, some authors have proposed two approaches in
order to tackle the unsteady interfacial coupling of CFD models.
Roughly speaking, the first approach favors the continuity of the
conservative variable W, by enforcing Wðxn ¼ 0�; tÞ ¼Wðxn ¼
0þ; tÞ in a weak sense (see [18,20]). This method has been recently
extended to the case of a generic variable ZðWÞ (see [4,2] and also
[13,10,3]). The second one relies on the basic paper by Greenberg
and Leroux [21]. It consists in introducing a color function Yðx; tÞ
where Yðx; tÞ ¼ 1, if xn ¼ x � n < 0, and Yðx; tÞ ¼ 0 if xn ¼ x � n > 0.
Since the interface is steady, the function Y verifies @tðYÞ ¼ 0.
Defining FnðWÞ ¼ YFn;LðWÞ þ ð1� YÞFn;RðWÞ, the fluxes at the stea-
dy coupling interface can be computed by solving the Riemann
problem associated with:

@tðWÞ þ @nðFnðWÞÞ ¼ 0; ð3Þ
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This method, which introduces the ‘‘father model” (3) obviously
privileges the conservation law. It has been used in [23,26].

More recently, a third approach has been proposed [4,2]. It com-
bines the second method with the relaxation methods [11,5,6]. The
coupling technique that is used herein makes use of the latter ap-
proach. Actually, we want here to take advantage of the fact that
the HRM model may be viewed as the ‘‘father model” of the HEM
model. Another advantage of the third approach is that one may
get rid of possible resonance phenomena, as underlined in [2,4]
for instance. This phenomena may arise when using the second ap-
proach if a genuinely non linear field overlaps the steady linearly
degenerate field associated with the color function Y. Though it is
not clear whether this has drastic consequences, it seems indeed
much more reasonable to avoid this problem that is not clearly
understood [17].

The paper is organized as follows:

� Sections 2 and 3 are devoted to the presentation of both HEM
and HRM models, but also on some of their properties (hyperb-
olicity, entropy inequality, positivity results for sufficiently
smooth solutions).

� We then present the coupling method in Section 4. Special
attention will be paid to the numerical treatment of the coupling
interface, which relies on:

(i) an evolution step,
(ii) an instantaneous relaxation step,

(iii) a finite relaxation step in order to account for source terms.

This section also includes a brief description of the Finite Vol-
ume methods that will be applied in order to compute approxima-
tions of solutions in non coupled codes.

� Numerical results are displayed in Section 5. This includes basic
test cases involving contact waves, shock waves and rarefaction
waves, but also a schematic representation of the flow in a part
of the primary coolant circuit in a nuclear power plant.

Throughout the paper, we will use the following notations: q
stands for the density of the mixture, s ¼ 1=q is its specific volume
and U represents the mean velocity of the mixture. Moreover P, C,
e, h ¼ eþ P=q, E ¼ eþ U2=2, respectively, stand for the pressure,
the liquid mass fraction, the internal energy, the enthalpy, and
the total volumetric energy of the mixture. The subscripts v and
l, respectively, refer to the vapor and the liquid phases. The over-
script s denotes saturated quantities.

2. The homogeneous relaxation model

This four-equation model can be derived from the six-equation
two-fluid model. In the following we focus on specific closure laws
and we detail some properties connected with these choices.

2.1. Closure laws

We consider that the two fluids have the same mean velocity,
that is Ul � Uv ¼ Ur ¼ 0. In order to take into account the mass
transfer between the two phases, a source term qC stands on the
right hand side in the equation of the mass balance of the liquid
phase. Thus the governing equations are:

@tðqCÞ þ @xðqCUÞ ¼ qC

@tðqÞ þ @xðqUÞ ¼ 0

@tðqUÞ þ @xðqU2 þ PÞ ¼ 0
@tðqEHRMÞ þ @xðUðqEHRM þ PÞÞ ¼ 0

8>>><>>>: ð4Þ

with:

EHRM ¼
def

eHRMðP;q;CÞ þ
U2

2
and eHRMðP;q; CÞ ¼

def
hHRMðP;q; CÞ �

P
q
ð5Þ

where the function hHRMðP;q;CÞ is the specific enthalpy that must
be prescribed by the user. In practice here, we will use the definition
(10).

The set of physical relevant states for the system (4) is:

XHRM ¼
deffðq;U; P;CÞ=q P 0; C 2 ½0;1�; P P 0g ð6Þ

In order to close the system, we need to define hHRM and C.

� First, we write the enthalpy function hHRM. We choose the thermo-
dynamic closures inspired by the THYC and FLICA codes [31,22].
They consider the medium as the mixing of two fluids: liquid
water and vapor. Moreover, the vapor is assumed to be in a satu-
ration state, this implies that each thermodynamic function rela-
tive to this fluid only depends on one variable, say the pressure
P. The two pure fluids are assumed to obey a usual c closure law.

We note cv > 1 (respectively, cl > 1) the adiabatic constant
for the vapor (respectively, the liquid), and ev , hv , qv and sv

the internal specific energy, specific enthalpy, density and spe-
cific volume for the vapor (respectively, el, hl, ql and sl the inter-
nal specific energy, specific enthalpy, density and specific
volume for the liquid).

We recall the following definitions:

epðq;PÞ ¼
def P
ðcp�1Þq and hpðq;PÞ ¼

def
dpPs with dp ¼

def cp=ðcp�1Þ

ð7Þ

for p ¼ l;v .We will use standard values in order to account for
liquid and gas, respectively: cl ¼ 1:001 and cv ¼ 1:4. Moreover,
we assume that if the pressure P stays in ½PMIN; PMAX � the saturation
curves for the enthalpy and the volumetric fraction can be
approached by the following functions:

– Saturated vapor:

hs
vðPÞ ¼

def
AvP þ Bv and ss

vðPÞ ¼
def hs

vðPÞ
dvP

ð8Þ

– Saturated liquid

hs
l ðPÞ ¼

def
AlP þ Bl and ss

l ðPÞ ¼
def hs

l ðPÞ
dlP

ð9Þ

Physically relevant saturation curves ensure that: ss
v ðPÞ > ss

l ðPÞ
and hs

vðPÞ > hs
l ðPÞ. Typical values of the coefficients PMIN , PMAX ,

Av < 0, Al, Bv and Bl related to nuclear cooling conditions can be
found at the beginning of Section 5.

We can now define the total specific enthalpy of the mixture:

hHRMðP;q;CÞ ¼
def

ChlðP;qlÞ þ ð1� CÞhs
vðPÞ; ð10Þ

where

ql ¼ qC
1

1� qð1� CÞss
vðPÞ

¼ C
s� ð1� CÞss

vðPÞ
; ð11Þ

This relation (11) is obtained by introducing the two void fractions
al and av for the liquid and vapor, respectively, that are in agree-
ment with al þ av ¼ 1. Using the standard definitions of the partial
mass for the liquid and the mean density of the mixture:

alql ¼ qC and : q ¼ alql þ avqv

one may eliminate al;v and inject qv ¼ qs
vðPÞ, in order to obtain ql in

terms of P;q;C, that is the above relation (11).
In the following, the HRM model will refer to the set of Eqs. (4, 5,

10).
The enthalpy (10) of the model can be simplified, by using (7, 8).
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