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a b s t r a c t

The suboptimal control with the cost function directly connected to the wall shear and introduced for a
while has been revisited through direct numerical simulations of high temporal and spatial resolution. Its
effect on the fine structure of the wall turbulence has been analyzed in details, essentially through the
spanwise vorticity transport mechanism. It is shown that only half of the viscous sublayer is mainly
affected by the control. The actuation efficiency is limited in terms of the wall shear stress reduction,
but is high as long as the turbulent wall activity is concerned. The wall shear stress is reduced due both
to the reduction of the shear production in the viscous sublayer and to the contribution of the turbulent
body force. The dissipation involving in the streamwise vorticity fluctuations transport equation
increases significantly and overcomes the production in a thin layer near the wall leading to a drastic
diminution of the turbulent wall shear stress fluctuations.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Development of efficient and feasible active drag control strat-
egies is the new challenge of the wall turbulence research for the
next decades. The socio-economic consequences of the drag reduc-
tion are becoming increasingly important for improving the perfor-
mance of aircrafts and ships. New ideas are being developing in
several teams around the world to achieve this delicate goal, by
using either techniques based on the knowledge of near wall
coherent structures and related physics [1,2] or by applying adap-
tive [3] or non-adaptive [4] non-linear control theory to the wall
turbulence.

Optimal and suboptimal strategies are part of the second cate-
gory. The goal of optimal control is to determine the actuation at
the wall, which minimizes the total cost i.e., sum of the total shear
stress and the cost for the intervention at the wall during a time
interval T. This procedure is long and memory time consuming.
Suboptimal control tries to pass beyond this shortcoming by pro-
ceeding at each time step. Suboptimal control techniques applied
to the turbulent drag reduction problem have been introduced
for a while [5,6], yet detailed analysis of the controlled flow field
is curiously missing in the literature to our knowledge. Our objec-
tive is to revisit the suboptimal strategy through well-resolved di-

rect numerical simulations at a comparatively higher Reynolds
number in order to have a more profound physical insight into
the turbulence response. A particular attention will be paid here
to the structural alteration in the low buffer and viscous sublayers,
especially through the vorticity transport mechanisms. It has to be
emphasized that; as the title indicates only one-information strat-
egies are concerned in this paper. The pre-determined cost func-
tion is based only on the streamwise component of the shear
stress at the wall. There are substantial published works dealing
with the performance development of suboptimal control tech-
niques. For example Lee et al. [7] use two laws requiring, respec-
tively, spatial information on the wall pressure over the entire
wall and one component (spanwise) of the wall shear also over
the entire wall. The aim here is not to develop more efficient sub-
optimal strategies nor low-cost control algorithms [8] the but to
contribute to the understanding of the response of the wall turbu-
lence to such an actuation, which has some striking facets, as it will
be discussed. At last but not least, we have to indicate that, despite
the considerable practical difficulties some researchers involve
into well-designed experiments dealing with optimal or derivative
strategies [9]. Thus, it is not impossible to have in the more or less
next future real applications of active control that is worthwhile to
be investigated in more details and from different points of
view.

Suboptimal control has successively been applied to some
flow control problems such as the separation control over a
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backward-facing step [10] or to vortex shedding [11] to give a
few examples. Its application to drag reduction was however
not convincing. The suboptimal control with cost function based
directly on the wall shear stress results in less drag reduction
than simpler ad-hoc strategies, despite the fact that it uses the
information in the whole flow field. That is itself interesting
and worth to be analyzed in detail, in particular regarding the
wall structure modification under control that is missing in the
literature. The wall shear stress is an accessible quantity from
the measurements through micro wall gauges, while other strat-
egies requiring spanwise variations of the fluctuating wall
streamwise vorticity [3] is much harder to realize. Bewley et
al. [4] indicated that ‘‘the minimization of a cost functional rep-
resenting exactly the quantity of interest (drag) is not necessarily
the most effective means of reducing the quantity of interest
over the long term” without however establishing clearly the
physical reasons. Thus, even in the optimal control, minimizing
the cost function over global quantities such as the total turbu-
lent kinetic energy or enstrophy reveals to be significantly more
efficient than the cost function related directly to drag, even
when the optimization horizon time is large. The one-informa-
tion optimal control of drag gives only slightly better results
than the best opposition control strategy ([4], Fig. 12). Thus
the deficiency of the one-information suboptimal control based
solely on the drag seems not to be entirely due to the optimiza-
tion horizon. We will show that the main reason is presumably
the lack of correlation of the local-instantaneous wall shear with
the inner layer turbulence. To summarize, the main objectives of
revisiting the one-information suboptimal control are:

(i) To report detailed data on the flow structure under the sub-
optimal control with the cost function solely based on the
wall shear stress.

(ii) Analyze the control mechanism through the vorticity trans-
port concept.

(iii) Compare and analyze the wall action under the suboptimal
and ad-hoc strategies with the aim to depict why the former
is less efficient than the latter.

2. Suboptimal control

Contrarily to the optimal control whose aim is to relaminarize
the flow in a given time interval, the suboptimal strategy attempts
to decrease at each time step the cost function. The latter is:
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where s is the shear at the wall whose area is denoted by C, / is the
action at the wall in the form of pinpoint blowing/suction distribu-
tion and k is a constant. The first integral above is clearly the energy
expended to achieve the drag reduction. The control problem con-
sists of determining the optimum / at each time step. The state
equation is the Navier–Stokes equation:
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where m is the viscosity, ui and xi are, respectively, the instanta-
neous local velocity and coordinates and P denotes the pressure.
Mixed notations will be used here for convenience, i.e., the
streamwise (x1), wall normal (x2) and spanwise (x3) directions will
also be denoted, respectively, by x, y and z together with the cor-
responding velocity components u(u1), v(u2) and w(u3). The Eq. (1)
is subject to the following boundary conditions at the wall,
x2 = y = 0:

u1 ¼ 0
u2 ¼ /ðx1; x3Þ
u3 ¼ 0

ð3Þ

The sensitivity of the cost function to the actuation modifications /
is measured through Fréchet derivatives as in classical non-linear
control theory [12]. The variation of a functional n (/), denoted by
~nð/; ~/Þ is given by:

~nð/; ~/Þ ¼ lim
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where F stands for the Fréchet operator [13]. In practice, the
Navier–Stokes equation is discretized in time and space, and the
resulting operators are transformed through the Fréchet operator.
Using a Crank–Nicholson scheme for the time discretization results
for instance in the decomposition Qn+1 + Rn = 0 of (2) where Qn+1 and
Rn regroup the terms at the times steps n + 1 and n. The resulting
Fréchet transformation of (2) is consequently:
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where b1 and b2 are the coefficients resulting from the time discret-
ization, and hi, q and k are the Fréchet transforms of, respectively, ui,
the pressure fluctuations p0 and the mean pressure gradient oP

ox1
; dij

standing for the Kronecker delta function. The last equation com-
bined with the Fréchet transformation of the cost function:
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subject to the boundary conditions (3) allows the determination of
the gradient DJ

D/ from which the actuation at the next time step n + 1
is computed either by a conjugate gradient method
/nþ1 ¼ /n � a DJ

D/

� �n
or by a research of minima algorithm. By the

introduction of an adjoint problem related to (5) and the convenient
choice of its boundary conditions, DJ

D/ can be related to the fluctuat-
ing adjoint pressure field at the wall. The adjoint operator A* is de-
fined by:

hAhi;uii ¼ hhi;A
�uii þ b ð7Þ

where ui is the adjoint of hi and b is a constant to be determined.
The internal product hf1, f2i is the triple integral in the control vol-
ume V, hf1, f2i =

R R R
Vf1f2 dx1 dx2 dx3. Applying the operator (7) to

the Eq. (5) results in:
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Here k and p stand, respectively, for the mean adjoint pressure gra-
dient and fluctuating adjoint pressure field. The advantage of using
an adjoint method is in the entire liberty of related boundary con-
ditions choice. Taking conveniently the latter leads to:

DJð/Þ
D/

¼ k
C
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b2C
pw ð9Þ

relating the Fréchet variation of the cost function to the adjoint
pressure field pw at the wall. Thus both the Navier–Stokes equation
(2) and its related adjoint Eq. (8) are resolved in time and space to
determine pw and the suboptimal distribution of blowing/suction
actuation at the wall. The procedure is the same as used [5] with
some subtle differences. We noticed for instance that the research
of minima algorithm in the cost function at the time step n is par-
ticularly efficient when it is based on the gradient DJð/Þ

D/ computed
at n � 1 and not n. Indeed, the wall shear stress, thereby the cost
function cannot have proper information on the instantaneous
change induced by a sudden variation in the boundary condition.
A time lag of about Dt+ � Dy+2 in wall units (related to the shear
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