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Label-free LC-MS/MS proteomics has proven itself to be a powerfulmethod for evaluating protein identification and
quantification from complex samples. For comparative proteomics, several methods have been used to detect the
differential expression of proteins from such data. We have assessed seven methods used across the literature for
detecting differential expression from spectral count quantification: Student's t-test, significance analysis of micro-
arrays (SAM), normalised spectral abundance factor (NSAF), normalised spectral abundance factor-power law glob-
al error model (NSAF-PLGEM), spectral index (SpI), DESeq and QSpec. We used 2000 simulated datasets as well as
publicly available data from a proteomic standards study to assess the ability of thesemethods to detect differential
expression in varying effect sizes and proportions of differentially expressed proteins. At two false discovery rate
(FDR) levels, we find that several of themethods detect differential expressionwithin the datawith reasonable pre-
cision, others detect differential expression at the expense of low precision, and finally, others which fail to identify
any differentially expressed proteins. The inability of these sevenmethods to fully capture the differential landscape,
even at the largest effect size, illustrates some of the limitations of the existing technologies and the statisticalmeth-
odologies.
Significance: In label-free mass spectrometry experiments, protein identification and quantification have always
been important, but there is now a growing focus on comparative proteomics. Detecting differential expression in
protein levels can inform on important biological mechanisms and provide direction for further study. Given the
high cost and labour intensive nature of validation experiments, statistical methods are important for prioritising
proteins of interest. Here, we have performed a comparative analysis to investigate the statistical methodologies
for detecting differential expression and provide a reference for future experimental designs.
This article is part of a Special Issue entitled: Computational Proteomics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Protein detection and quantification have vastly improved in recent
years with the technological advances of mass spectrometry. Liquid
chromatography tandem mass spectrometry (LC-MS/MS) has become
the method of choice for quantitative proteomics and can now assess
protein samples in a bottom-up format with reasonable throughput.
There are several methods for tagged or isotope labelled quantification,
including isobaric tags for relative and absolute quantitation (iTRAQ)
[1], tandem mass tags (TMT) [2] and stable isotope labelling by amino
acids in cell culture (SILAC)[3]. These methods offer multiplexing capa-
bility at the requirement of more complex protocols and expensive re-
agents. However, SILAC is unsuitable for clinical samples and the
tagged methods have the limitation that co-isolation of multiple

precursor ions can interfere with accurate quantitation. Instead, label-
free methods aim to provide relative quantification without isotopic la-
belling and are becoming increasingly popular in proteomics [4–6].

For label-free proteomics, one can quantify proteins by using
their spectral counts as an approximation of protein abundance.
Spectral counts are simply the total number of spectra per identified
protein and can be easily calculated from the detected peptides by
LC-MS/MS; within a protein, they can be taken as an semi-
quantitative approximation as a protein with higher abundance in
one group should have more identified spectra than the protein
with lower abundance in another. Several methods have been pro-
posed and applied which take advantage of the relationship between
the spectral counts and protein abundance to detect differential ex-
pression. The primary goal of a differential expression analysis is to
detect as many truly differentially expressed proteins as possible
(reducing the number of false negatives or type II errors) while con-
trolling for the number of false positives (type I errors). As label-free
methods can quantify hundreds to thousands of proteins, multiple
testing corrections must be applied to differential expression
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analyses to control the number of false positives or type I errors. One ap-
proach is to control the false discovery rate (FDR), which is the expected
proportion of false positives within a set of significantly differentially
expressed proteins. For example, if one had 100 proteins which are de-
tected as differentially expressed at a 5% FDR, five of them are expected
to be false positives. This is a separate FDRmeasure than the one associ-
ated with protein inference and identification.

In this study, we chose seven methods for identifying significant
differences in spectral count based protein expression. These
methods were chosen from the literature and included methods
originally proposed for differential expression analysis in microar-
rays and RNA-seq as well as those specific to proteomics. We includ-
ed the significance analysis of microarrays (SAM) [7] and the
normalised spectral abundance factor coupled with a power law
global error model [8]; bothmethodswere designed for gene expres-
sionmicroarray data and have been used for the analysis of label-free
MS proteomics [9]. The spectral index (SpI) [10] and QSpec [11]
methods were included as methods which were developed specifi-
cally for spectral count quantification and have been used in several
studies [12,13]. Others have now taken advantage of the methods
developed for RNA-seq experiments and applied them in spectral
count proteomic studies [14,15], so we have also included the
DESeq method [16]. Finally, we included the t-test and normalised
spectral abundance factor (NSAF) [17] coupled with the t-test. The
t-test is one of the most commonly used statistical tests and has
been used to detect differential protein expression [18].

To evaluate these methods, we used 2000 simulated datasets as
well as data with a known spike-in difference from the CPTAC
standards assessment [19,20]. We investigated the ability of these
seven methods to identify differential expression with respect to
several different measures; 1) effect sizes, or the percentage of
abundance difference, 2) proportion sizes, or the percentage of
proteins within a dataset that are differentially expressed and 3) at
two levels of multiple testing corrections. Within this evaluation,
we provide insight into the performance of these methods with
respect to these measures and suggestions for their use in future
proteomic studies.

2. Materials and methods

2.1. Simulated data

Real data from two previously published studies were used as
the basis for the simulated data (Fig. 1). The first dataset was from LC-
MS/MS study investigating the proteomic changes resulting from the
addition of an exogenous matrix metallopeptidase within a population
of three cases and three controls [21]. The second was a shotgun prote-
omic analysis of hibernating arctic squirrels within a population of four
cases and four controls [9]. 2000 datasets were simulated— 1000 based
on the data from the matrix metallopeptidase study (denoted D1) and
1000 based on the data from the arctic squirrel study (denoted D2). In
D1, each of the 1000 datasets consisted of simulated counts from 606
proteins and in D2, each of the 1000 datasets consisted of simulated
counts from 3538 proteins. Spectral count data can be modelled as a
Poisson distribution where the probability of observing a count, n,
with respect to the expected count, γ, is given in Eq. (1).

f n;γð Þ ¼ γne−γ

n!
ð1Þ

In our simulations, we set γ to the average spectral count of an indi-
vidual protein from a real dataset and used it to derive a set of Poisson
distributed random deviates to simulate the spectral counts for a
given protein. This was to preserve the relationship between the spec-
tral count abundance and protein length, as the number of amino
acids is used by several of the statistical methods. To incorporate effect
sizes into the simulated data, we randomly sampled 20 simulated pro-
teins and added additional counts to one group as follows

SCi; j ¼ SCi; j � 1þ pð Þ ð2Þ

where SCi,j is the simulated spectral count from the jth sample of protein
i and p is one of 0.2 (20%), 0.5 (50%), 0.8 (80%), 1 (100%), and 2 (200%).
In both D1 and D2, one hundred datasets at each effect level were sim-
ulated, resulting in 500 datasets from each. The set of 500 (100

Fig. 1. Simulation data scheme.Overviewof the simulated data generationwith different effect sizes anddifferent proportions of differentially expressedproteins. T TEST— Student's t-test;
SPI— spectral index; SAM— significance analysis of microarrays; QSPEC— QSpec; NSAF— normalized spectral abundance factor; NSAF-PLGEM— normalized spectral abundance factor-
power law global error model; DESEQ— DESeq.
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