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a b s t r a c t

Solar global irradiation is barely recorded in isolated rural areas around the world. Traditionally, solar
resource estimation has been performed using parametric-empirical models based on the relationship
of solar irradiation with other atmospheric and commonly measured variables, such as temperatures,
rainfall, and sunshine duration, achieving a relatively high level of certainty. Considerable improvement
in soft-computing techniques, which have been applied extensively in many research fields, has lead to
improvements in solar global irradiation modeling, although most of these techniques lack spatial
generalization.

This new methodology proposes support vector machines for regression with optimized variable selec-
tion via genetic algorithms to generate non-locally dependent and accurate models. A case of study in
Spain has demonstrated the value of this methodology. It achieved a striking reduction in the mean abso-
lute error (MAE) – 41.4% and 19.9% – as compared to classic parametric models; Bristow & Campbell and
Antonanzas-Torres et al., respectively.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Solar photovoltaic energy has experienced enormous growth in
recent years due to its mass scale economy and subsequent cost
reduction, which has rendered its price competitive in many elec-
tricity markets. The globally installed capacity reaches 138.9 GW
[1] and this power is expected to continue increasing. Accurate
solar resource assessment is critical to the proper development
of solar technologies [2], as it mitigates uncertainties in these
investments.

Solar global irradiation has traditionally been estimated from
other related and commonly measured variables, with relatively
simple parametric models, generally, calibrated onsite, aiming to
parameterize the atmospheric transmittance and relate it to the
extraterrestrial irradiation. Extraterrestrial irradiation accounts
for the stationary component of solar irradiation, which is only
dependent on solar geometry, being the atmospheric transmit-
tance the stochastic component. Angstrom first proved the exis-
tence of a linear relationship between sunshine duration and
extraterrestrial irradiation and daily global irradiation [3]. Many
other approaches consisted of the daily range of temperatures
[4–8] or the daily range of temperatures and rainfall [8–11]. The

daily range of temperatures is associated with cloud cover and
cleanliness of the atmosphere. Thus, high daily ranges of tempera-
tures are typical of sunny, predominantly clear-sky days. Another
different alternative resulted from the cloud cover measurement
[12]. For a more detailed description of parametric models, the
authors refer to their previous study [13]. This research concluded
that some of the drawbacks of parametric models were the
complexity of variable selection for model tuning and high mean
absolute errors, ranging between 2.2–3.3 MJ/m2 day.

Solar irradiation can also be estimated from satellite images and
clear sky models. Basically, a satellite image collates the upwelling
radiance from the Earth. This radiance varies depending on ground
albedo and atmospheric transmittance, from clear sky periods to
completely overcast, providing direct information about cloudiness
and clear skies, throughout the cloud and clear-sky indexes
[14,15]. The cloud index is computed from the reflectivity recorded
outside the atmosphere, normalized with the range between the
darkest pixel (corresponding to clearest sky conditions) and the
brightest value (corresponding to the most overcast conditions).
The clear sky index is calculated from the relationship between
global horizontal irradiance and the clear sky global horizontal
irradiance. These indexes are used to attenuate irradiance obtained
via clear sky transmittance models, which are generally based on
aerosol and precipitable water vapor content in the atmosphere
[16,17].
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The fact that satellite derived solar irradiation deviation is
associated with the spatial resolution of sensors (image’s pixel
size) and that this resolution generally falls within the range of
kilometers implies a high level of uncertainty [18,19]. Other
sources of uncertainty are found in the inherent uncertainty of
aerosol and water vapor estimations [14,20], which are normally
estimated for very low spatial resolutions in the range of the
Multi-angle Imaging SpectroRadiometer – MISR 0.5 � 0.5� [21]
and the Moderate Resolution Imaging Spectroradiometer –
MODIS 1 � 1� [22]).

In addition, solar irradiation can be estimated with soft-
computing techniques using different atmospheric transmittance
parameterizations and techniques. Artificial neural networks
(ANN) have been widely employed to estimate solar irradiation
using different sets of inputs depending on climatic criteria: in
Turkey [23], Brazil [24], Saudi Arabia [25] or Spain [26], among
others. Bayesian neural networks were also found to be useful
when trained with maximum and minimum air temperatures
[27]. Other techniques such as fuzzy genetic (FG) and adaptive
neuro fuzzy inference systems (ANFIS) have been applied using
spatial information (latitude, longitude and elevation) as inputs
for models to account for spatial dependence [28]. Eventually,
support vector machines for regression (SVR) began to be used to
estimate solar irradiation from sunshine duration [29] and air tem-
peratures [30] in China, detecting a remarkable spatial influence
induced by elevation and temperature differences between train-
ing and testing sites.

The main drawbacks of these soft-computing techniques are the
high computational costs, the complexity in variable selection and
the low capacity of generalization if over-fitted, rendering them
extremely locally dependent. In this study, the authors propose a
new methodology to simplify the estimation of solar irradiation
with support vector machines for regression with a wrapper-based
scheme for input selection to obtain non-locally dependent mod-
els. This methodology was proven useful for developing a general
(non-locally dependent) model for solar irradiation estimation,
which was implemented in a case of study in Spain, under different
climates and on diverse terrain. The results are compared with the
classic parametric models [5,13].

2. Methodology

This study aims to develop a methodology capable of generating
spatially general solar irradiation models, using data from different
locations. To this end, SVR was the predictive technique chosen
(see Section 2.1). In order to improve on the quality of the predic-
tions, model optimization parameter (MPO) of SVR and feature
selection (FS) were performed simultaneously using genetic algo-
rithm (GA), as an evolution-based optimization algorithm, as
detailed in Section 2.2.

This methodology was also applied to locally-trained models,
i.e. models trained with data from a specific location, in order to
quantify differences between local and general prediction models.
Furthermore, some classical parametric techniques (Section 2.3)
are included in the analysis as a benchmark for comparison with
the proposed methodology.

2.1. Support vector regression

Support vector machines (SVM) were originally developed by
[31] for classification problems. The popularity of this technique
rapidly increased due to its ability to deal with non-linear data
whilst maintaining satisfactory generalization ability and avoiding
overfitting during the training process. The regression variant of
SVM, also known as support vector regression, was later

introduced by [32] who proposed the e-intensive loss function
(e-SVR). In the present methodology, e-SVR is applied and it is
hereafter described.

SVR can be more easily understood by first assuming linear
data. Here, the general equation for a linear regression model is
as follows:

f ðxÞ ¼ w; xh i þ b ð1Þ

where x is the set of input patterns, w the unkown weight vector,
w; xh i is the dot or inner product between w and x and b a threshold

value. Traditional models, such as multiple linear regression, com-
pute the weight vector based on the reduction of quadratic errors.
On the contrary, e-SVR are based on optimizing the absolute error.
The initial goal of e-SVR is to develop a function where all errors lie
under a predefined value e but with the best generalization capacity
possible (generally related to model flatness). These two conditions
are imposed as follows:

minimize
1
2
jjwjj2

subject to
yi � w; xih i þ bð Þ 6 e

w; xih i þ bð Þ � yi 6 e

� ð2Þ

A flat model is obtained by minimizing the norm of the weight
vector jjwjj. Moreover, the constraints of Eq. (2) guarantee that
every error is lower than e. Nevertheless, this formulation assumes
that a solution for the optimization problem exits, which is not
always true. In order to overcome this problem the condition
imposed in Eq. (2) is relaxed and samples with errors higher than
e are admitted:

minimize
1
2
jjwjj2 þ C

XN

i¼1

ni þ n�i
� �

subject to

yi � w; xih i þ bð Þ 6 eþ ni

w; xih i þ bð Þ � yi 6 eþ n�i
ni; n

�
i P 0

8><
>:

ð3Þ

where ni and n�i are the slack variables. A second term is included to
measure the amount of loss via the slack variables. Here is where
the foundation under the e-intensive loss function njej lies:

njej ¼
0 if yi � ŷij j < e
yi � ŷij j � e otherwise

�
ð4Þ

where yi and ŷi are the measured and predicted outcome, while e is
a parameter defined by the user. Points inside the e-intensive region
have null slack variables (ni ¼ 0 and n�i ¼ 0), while points out of this
region have either (ni > 0 and n�i ¼ 0) or (ni ¼ 0 and n�i > 0), as slack
variables are constrained to be non-negative. Therefore, SVR tuning
is influenced solely by points out of the e-intensive region, also
known as support vectors.

The trade-off between the two terms of Eq. (4) is controlled by
the regularization parameter C, also referred to as cost. For low C
values, the first term dominates the equation. A flat general model
is then obtained but at the expense of under-training the model.
On the contrary, for high C values, the second term dominates.
The training error is then reduced, but at the same time, a risk of
overfitting appears.

Standard dual optimization through Lagrange multipliers is
used to solve the optimization problem of Eq. (3). Once the
Lagrangian is computed, several transformations are conducted
until the following expression is then obtained:

f ðxÞ ¼
Xn

i¼1

ai � a�i
� �

xi; xh i þ b ð5Þ

where ai and a�i are Lagrange multipliers. A unique solution to this
optimization problem can be obtained via quadratic programming
(QP) techniques.
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