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a b s t r a c t s

Probabilistic wind power forecasting not only produces the expectation of wind power output, but also
gives quantitative information on the associated uncertainty, which is essential for making better deci-
sions about power system and market operations with the increasing penetration of wind power genera-
tion. This paper presents a novel kernel density estimator for probabilistic wind power forecasting,
addressing two characteristics of wind power which have adverse impacts on the forecast accuracy,
namely, the heavily skewed and double-bounded nature of wind power density. Logarithmic trans-
formation is used to reduce the skewness of wind power density, which improves the effectiveness of
the kernel density estimator in a transformed scale. Transformations partially relieve the boundary effect
problem of the kernel density estimator caused by the double-bounded nature of wind power density.
However, the case study shows that there are still some serious problems of density leakage after the
transformation. In order to solve this problem in the transformed scale, a boundary kernel method is
employed to eliminate the density leak at the bounds of wind power distribution. The improvement of
the proposed method over the standard kernel density estimator is demonstrated by short-term proba-
bilistic forecasting results based on the data from an actual wind farm. Then, a detailed comparison is
carried out of the proposed method and some existing probabilistic forecasting methods.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Efficiently integrating wind power generation with the nature
of randomness and intermittence in power system and market
operations necessitates wind power forecasting (WPF). The
widely-used WPF method produces only a conditional expectation
of wind power output, and is a deterministic prediction (or spot
prediction) [1]. However, studies have indicated that wind power
generation is a non-linear and non-stationary process. A large por-
tion of the forecasting error comes from meteorological variables,
especially wind speed, which have low predictability [2].
Therefore, the accuracy of WPF varies with time, with significant
uncertainty involved [3–5].

Compared with deterministic forecasting, probabilistic wind
power forecasts not only produce the expectation of wind power
output, but also give quantitative information on the associated
uncertainty [6]. This method has been applied to a wide range of
decision-making problems related to power system operations,

such as reserve requirement determination [7], economic dispatch
[8], unit commitment [9] and energy storage sizing [10]. In addi-
tion, probabilistic wind power forecasting could help power mar-
ket operators and market participants make sound decisions in
uncertain electricity markets, which can hardly be achieved by
deterministic wind power forecasting [11,12]. For instance,
Pinson et al. [13] reported an optimal bidding strategy for wind
power producers based on probabilistic forecasting. Simulation
results showed that the new bidding strategy allowed a multi-
MW wind farm to increase its revenue by 10–20%.

For continuous random variables such as wind power output,
probabilistic forecasting usually takes the form of quantiles, pre-
diction intervals, risk indices or the probability density function
(PDF) [14]. The two main choices in constructing the probabilistic
forecasting of wind power output are the parametric and non-
parametric approaches. The parametric approach is based on
assuming a predefined shape of predictive distribution, as in
Weibull or Gaussian [15,16]. However, the assumption about the
wind power distribution shape may be not reasonable, which
may influence the effectiveness of the approach. Without any
assumption of density shape, in the non-parametric framework,
wind power density is estimated at a finite number of points.
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A series of non-parametric approaches have been applied in proba-
bilistic wind power forecasting, for example, adaptive resampling
[17], quantile regression [18–20] and kernel density estimation
(KDE) [21–23].

The KDE method is popular among non-parametric
approaches. It can not only provide entire information about
wind power’s predictive distribution, but can also easily deal
with multi-modal wind power density. However, there are still
some problems in the direct application of the standard KDE
for probabilistic forecasting. Statisticians have found that the
KDE method has worked well for near-Gaussian distributions,
but not for ones that are significantly different from Gaussian
density [24]. It is known that the distribution of wind power
forecasting error is heavily skewed and heavy-tailed, resulting
in a higher possibility of forecasting error in the tail of the den-
sity [25]. Therefore, wind power density is different from
Gaussian. It is difficult to accurately estimate such a heavily
skewed distribution with the standard KDE method. Bessa
et al. [26] proposed a novel time-adaptive quantile-copula KDE
method that produced more accurate probabilistic forecasting.
Jeon and Taylor [23] applied the conditional KDE method to
model the stochastic nature of the conversion from wind speed
into wind power. In this paper, we introduce a transformation-
based KDE method to address the heavily skewed wind power
density. Transforming a variable to facilitate the model estima-
tion is a commonly used approach in statistical analyses [27].
For modeling the non-linear nature of wind power generation,
several transformation approaches have been investigated.
Pinson [28] introduced the logit transformation into very-short
term probabilistic wind power forecasting. Messner et al. [20]
proposed to transform the observed wind power into wind speed
via the inverse power curve of the wind turbine. In this paper,
the proposed logarithmic transformation is focused on reducing
the skewness of wind power density. The resulting new dis-
tribution in the transferred scale is much closer to the
Gaussian distribution. The essence of this scheme is to transform
the data to a scale on which it is more appropriate to apply the
standard statistical tools, for instance, KDE. This transformation
also benefits the bias reduction of the KDE method.

Another notable characteristic of the wind power variable is
that it is double-bounded between the minimum output of zero
and the maximum output of the installed capacity of the wind
farm. Therefore, the wind power density is restricted within a com-
pact support, resulting in the boundary effect problem of proba-
bilistic forecasting. The boundary effect problem has had much
attention in recent years. Pinson [28] introduced two discrete
probability masses to represent the potential concentration of
probability at the bounds of the compact support. Messner et al.
[20] presented a censored regression model that solved the prob-
lems caused by censored wind power data. Probabilistic wind
power forecasting based on the KDE method also suffers from
the boundary effect problem [29]; that is, the kernel density esti-
mator is biased downward near the boundary. This problem is
caused by the discontinuity of wind power density across the
boundary [30], which has an adverse impact on the performance
of the KDE method. Pinson and Madsen [31] proposed a mean-vari-
ance model to model the shape of kernel functions associated with
each of the ensemble members. Bessa et al. [21] suggested that the
beta kernel function can be used for an interval-bounded variable
(i.e. wind power), and the gamma kernel function is suitable for a
one-sided bounded variable (i.e. wind speed). In our research, after
the proposed transformation, there still remains a serious problem
of density leakage in the transformed scale for the standard KDE
method. To solve this problem, a boundary kernel method is pro-
posed to eliminate the density leak at the bounds of the wind
power distribution. The boundary kernel is a linear combination

of two types of kernel function. As a result, the density estimate
would not leak outside the boundary of wind power distribution.

This paper is organized as follows. Section 2 describes the
theoretical methodology of the proposed KDE approach to
probabilistic wind power forecasting, including logarithmic
transformation and boundary kernel. Section 3 introduces an
evaluation framework for verification of the effectiveness of the
proposed method. The test results of the proposed method with
real-world data under the evaluation framework are given in
Section 4. This paper ends with a discussion and conclusions in
Sections 5 and 6, with remarks on the future development of
probabilistic wind power forecasting.

2. Methodology

2.1. KDE-based probabilistic wind power forecasting

KDE is a data-driven and non-parametric estimator of density
function. Given independent and identically distributed (i.i.d.) data
X1, . . ., XN following an unknown density function fX, the univariate
KDE is given by [30]

f̂ XðxÞ ¼
1

Nh

XN

i¼1

K
x� Xi

h

� �
ð1Þ

where K(�) is a kernel function and N is the number of samples.
Bandwidth parameter h can be estimated by plug-in bandwidth
selectors [32]. A density curve K(�) is placed at each data point,
and represents the contribution of the data point to probability den-
sity. The corresponding density estimate can be obtained by adding
up the N kernel functions.

Given i.i.d. multivariate data Xi1, . . ., Xid (i = 1, . . ., N) from d dif-
ferent variables x1, . . ., xd following an unknown multivariate den-
sity f X1 ;...;Xd

, the multivariate KDE is as follows [30]:

f̂ X1 ;...;Xd
ðx1; . . . ; xdÞ ¼

1
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where h1, . . ., hd are bandwidth parameters and Kj(�) is the kernel
function corresponding to the variable xj(j = 1, . . ., d).

The conditional PDF model is used in probabilistic wind power
forecasting, that is, in predicting wind power distribution when
knowing the value of the conditional variable. Conditional vari-
ables are chosen from the prediction information of Numerical
Weather Prediction (NWP), such as wind speed, wind direction
and temperature. Then, the wind power output density given at
time t for look-ahead time k can be formulated as:

f PðptþkjX ¼ xtþkjtÞ ¼
f P;Xðptþk; xtþkjtÞ

f XðxtþkjtÞ
ð3Þ

where xt+k|t is the wind speed prediction at time t for look-ahead
time k, pt+k is the wind power output at time t + k, fP is the density
of wind power output, fP,X is the joint probability density of wind
speed and wind power and fX is the marginal probability dis-
tribution of wind speed. This density fX has also been modeled suc-
cessfully in a parametric way by Weibull [33] or by log-normal [34]
distribution. In order to maintain the nonparametric property, we
chose to use the KDE method, which is also very easy to complete
in practice.

Using (1) and (2) to estimate fX and fP,X, respectively, we can
derive a probabilistic wind power forecast based on the standard
KDE method:

f̂ PðptþkjX ¼ xtþkjtÞ ¼
1

Nh1h2
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