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a b s t r a c t

Probability distribution of aggregated wind power generation in a region is one of important issues for
power system daily operation. This paper presents a novel method to forecast the predictive densities
of the aggregated wind power generation from several geographically distributed wind farms, con-
sidering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a
mesoscale numerical weather prediction model, a dynamic system is established to formulate the
relationship between the atmospheric and near-surface wind fields of geographically distributed wind
farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmo-
spheric state with the near-surface wind power generation measurements, and to forecast the possible
samples of the aggregated wind power generation. The predictive densities of the aggregated wind power
generation are then estimated based on these predicted samples by a kernel density estimator. In case
studies, the new method presented is tested on a 9 wind farms system in Midwestern United States.
The testing results that the new method can provide competitive interval forecasts for the aggregated
wind power generation with conventional statistical based models, which validates the effectiveness
of the new method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As the most promising renewable energy to replace the conven-
tional fossil energy, wind energy has experienced a rapid growth
around the world in the past decades [1]. However, due to the
stochastic nature of wind, the variability and intermittency in wind
energy pose great challenges to power system operations [2]. The
integration of energy storage system (ESS), especially the dis-
tributed ESSs such as plug-in hybrid electric vehicle (PHEV), is
one of the effective solutions to remedy this problem [3]. It is vali-
dated in [4] that the optimal storage size of ESS is strongly affected
by the wind power forecast error, which leads to a need of accu-
rately forecasting wind power generation. Moreover, with the
rapidly increasing wind power installation, forecasting the aggre-
gated wind power generation in a region becomes one of important
issues for power system daily operation [5].

Some works have been investigated to forecast the aggregated
wind power generation of regional wind farms. Pinson et al. [6]
employed the upscaling technique to extrapolate the aggregated
wind power generation from the wind power predictions of

reference wind farms. Another way to predict the aggregated wind
power generation is to use the smoothing techniques, e.g. Lobo and
Sanchez [7] used the smoothing techniques to construct the pre-
dictions of the aggregated wind generation from historical wind
speed predictions and the associated wind generation measure-
ments. These approaches provide deterministic predictions and
are convenient to implement. Nevertheless, due to the stochastic
nature of wind, there are inherent and inevitable wind power
forecasting errors with the deterministic predictions [8]. In this
case, probabilistic forecasting of the wind power is much more
meaningful.

Wind power probabilistic forecasting approaches can quantify
the uncertainties associated with the wind power predictions.
Such additional uncertainty information can help system operators
make more reliable and economical decisions in optimization
management of wind power [9]. Existing wind power probabilistic
forecasting approaches can be divided into two main categories:
statistical approaches [10–14] and physical approaches [15–17].
Statistical approaches use the historical wind generation and
numerical weather predictions (NWPs) as inputs and employ
machine learning models to provide wind power prediction inter-
vals or predictive densities. Nielsen et al. [10] used the quantile
regression method to provide wind power prediction intervals.
Juban et al. [11] employed a kernel density estimator to predict
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the conditional probabilistic density function (pdf) of wind genera-
tion. Pinson et al. [12] estimated the empirical distributions of
wind power forecasting errors and adopts a fuzzy inference model
and bootstrap resampling technology to generate the prediction
intervals from the empirical distributions. Sideratos and
Hatziargyriou [13] used a neural network model to predict the
uncertainty information of wind generation based on the point
forecasts. Wan et al. [14] proposed a novel hybrid intelligent algo-
rithm approach to formulate the prediction intervals of wind
generation based on extreme learning machine and particle swarm
optimization. The physical approaches are mainly based on
numerical weather prediction (NWP) models. Talyor et al. [15]
and Pinson et al. [16] employed weather ensemble predictions to
predict the wind power uncertainties. Chen et al. [17] combined
the NWP model with a Gaussian process for day-ahead wind power
prediction. An overview of state-of-the-art approaches in wind
power probabilistic forecasting can be found in [18].

The aforementioned models mainly focus on wind power
probabilistic forecasting at the single wind farm level. To forecast
the aggregated wind generation of several wind farms, it will be
more complicated. One of key points need to be considered is to
incorporate the spatial and temporal correlations between the geo-
graphically distributed wind farms. It is validated in [19] that a
good understanding of the spatial and temporal correlations
between the geographically distributed wind farms can help to
improve the forecasting accuracy of their aggregated wind power
generation. In addition, a favorable phenomenon caused by these
correlations is the spatial smoothing effect that the variability of
the aggregated wind power generation is less than that of a single
wind farm [20]. These correlations are inherently induced by the
motions of the atmosphere, e.g. the inertia of the same mesoscale
or synoptic scale weather systems [21]. Thus a fundamental way to
incorporate these inherent correlations is to use the NWP models.
The NWP models are established based on the primitive equations,
which formulate the physical laws of conservation of mass,
momentum, and energy, and for wind farms distributed over thou-
sands of miles, a mesoscale NWP model which omits the small
scale turbulence is suitable in the scale [22].

Furthermore, a good wind power probabilistic forecasting
model should be able to represent the non-Gaussian and non-sta-
tionary characteristics in wind power uncertainties [23]. The non-
Gaussianity is mainly caused by the nonlinear transformation
between the wind speed and wind power generation [24]. To
address this issue, researchers usually approximate this nonlinear
transformation by the individual turbine’s power curve [18]. The
non-stationary characteristic in wind power uncertainties is
mainly induced by the time-varying meteorological conditions,
e.g. the wind speed, air density, temperature and humidity, and
the dynamic behavior of wind turbines caused by the factors of
shadowing effects, aging and maintenance. To capture these non-
stationary changes in wind power uncertainties, some researchers
employ online learning algorithms for wind power probabilistic
forecasting [25–27]. Moller et al. [25] gave a time-adaptive quan-
tile regression model to provide interval forecasts. Bessa et al.
[26] proposed a time-adaptive quantile-copula kernel density
estimator to obtain the predictive densities of wind power genera-
tion by introducing a forgetting factor for the old input data. Kou
et al. [27] employed an ensemble model based on the warped
Gaussian process under an online model selection regime to pro-
vide the non-Gaussian predictive distribution of the wind power
generation. It is validated in [25–27] that with the online scheme
based models can well capture the non-stationarity in wind power
uncertainties and yield better performances than offline models.

To address above issues, this paper presents a novel method for
probabilistic forecasting of the aggregated wind power generation
from geographically distributed wind farms. Based on a mesoscale

NWP model and a wind speed downscaling model, a stochastic
dynamic system is formulated to describe the relationship
between atmospheric and near-surface wind fields. In the dynamic
system, the atmospheric conditions over the geographically
distributed wind farms are modeled as the system state, and the
system output consists of the wind power generation of each
individual wind farms. To cope with the non-Gaussian uncertain-
ties, a recursively backtracking framework based on the particle fil-
ter (PF) algorithm is applied to estimate the atmospheric state and
to forecast power generation of each wind farm. PF is a sequential
Monte Carlo method used for recursive nonlinear filtering and pre-
diction problems [28]. Unlike the traditional Kalman filter (KF), PF
estimates the posterior densities of the system state and system
output by a set of random samples (particles) and it is not
restricted by the linear and Gaussian assumption. In PF algorithm,
a series of random samples are generated from the uncertain atmo-
spheric state. These random samples are propagated and updated
to obtain the predictive samples of wind power generation accord-
ing to the dynamic model and the new received wind power
generation measurements. The predictive density of the aggre-
gated wind power generation is estimated by a non-parametric
kernel density estimator (KDE) based on the predicted samples.

The rest of this paper is organized as follows: Section 2 shows
the procedure of modeling the stochastic dynamic system.
Section 3 presents the details of forecasting the probabilistic
densities of the aggregated wind power generation. The case stud-
ies are shown in Section 4 and conclusions are given in Section 5.

2. Establishing stochastic dynamic system

In this section, a stochastic dynamic system is formulated to
describe the relationship between the atmospheric and near-
surface wind fields of geographically distributed wind farms. As
illustrated in Fig. 1, a dynamic equation is firstly formulated to pre-
dict the atmospheric wind speeds based on a mesoscale NWP
model. Then the output equation converts the atmospheric wind
speeds to the power generation for each wind farms. The founda-
tion of this dynamic system is explained in detail as follows.

2.1. Modeling stochastic dynamic equation for atmospheric boundary
layer

The stochastic dynamic equation is established based on a
mesoscale NWP model. According to the atmosphere dynamics,
evolution of the atmosphere can be described by the following
baroclinic primitive equations [22]:

Baroclinic primitive equationsBaroclinic primitive equations

NWP dataNWP data

Turbine’s hub height wind speedTurbine’s hub height wind speed

Wind power generationWind power generation

Atmospheric wind speedAtmospheric wind speed

Logarithmic wind profileLogarithmic wind profile

Wind power curve modelWind power curve model

Numerical discretizationNumerical discretization

Boundary conditionsBoundary conditions

Stochastic 
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Fig. 1. Flowchart of establishing the stochastic dynamic system.
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