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a b s t r a c t

The probabilistic distribution of wind speed is among the more significant wind characteristics in exam-
ining wind energy potential and the performance of wind energy conversion systems. When the wind
speed probability distribution is known, the wind energy distribution can be easily obtained. Therefore,
the probability distribution of wind speed is a very important piece of information required in assessing
wind energy potential. For this reason, a large number of studies have been established concerning the
use of a variety of probability density functions to describe wind speed frequency distributions. Although
the two-parameter Weibull distribution comprises a widely used and accepted method, solving the func-
tion is very challenging. In this study, the polynomial and radial basis functions (RBF) are applied as the
kernel function of support vector regression (SVR) to estimate two parameters of the Weibull distribution
function according to previously established analytical methods. Rather than minimizing the observed
training error, SVR_poly and SVR_rbf attempt to minimize the generalization error bound, so as to achieve
generalized performance. According to the experimental results, enhanced predictive accuracy and capa-
bility of generalization can be achieved using the SVR approach compared to other soft computing
methodologies.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Wind plays a central role in many applications, such as explor-
ing wind energy and bridge construction. Hence, having knowl-
edge of wind characteristics is of great importance. When the
probability density of wind speed is known, characteristics such
as mean, variance and power density can be easily determined.
In recent years, the Weibull distribution has been a commonly
applied, accepted and recommended distribution for the evalua-
tion of wind energy potential addressed in literature.

In planning offshore wind farms, short-term wind speeds play a
central role in estimating various engineering parameters, such as
power output, extreme wind load, and fatigue load. Lacking wind
speed time series of sufficient length, the probability distribution

of wind speed serves as the primary substitute for data when esti-
mating design parameters of wind farm [1].

The Weibull distribution [2] is a two-parameter function
employed to fit the wind speed frequency distribution. Among sev-
eral methods of estimating the parameters of Weibull wind speed
distribution are the maximum likelihood and graphical methods.
The results show that the wind distribution in the entire sitesbcan
best be modelled using the Weibull distribution with the Rayleigh
distribution being a close competitor [3]. Article [4] provided an
extensive review of some discrete and continuous versions of Wei-
bull distribution modifications. Six kinds of numerical techniques
often utilized to estimate Weibull parameters are reviewed in
[5], i.e. moment, empirical, graphical, maximum likelihood, modi-
fied maximum likelihood and energy pattern factor methods.
Results from simulation tests of random variables indicate that
the graphical method of estimating Weibull parameters performs
the worst, followed by the empirical and energy pattern factor
methods if the data number is smaller. Two mathematical models
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were proposed [6] that utilize Gaussian statistics and the Weibull
distribution respectively, to accurately model the consequences
on turbine productivity in turbulent environments. The main pur-
pose of the study in [7] was to investigate the possibility of devel-
oping wind speed probability density functions with potentially
better accuracy than the maximum entropy principle (MEP) and
Weibull distribution. It was shown in [8] that the minimum cross
entropy (MinxEnt) principle may serve as an alternative method
for accurately estimating both wind distribution and wind power.
In article [9], a generalized feed-forward type of neural network
(GFNN) was used to predict the annual wind speed probability
density distribution. Paper [10] proposed a methodology to esti-
mate the parameters of the Weibull wind speed probability density
distribution and its standard errors. Three of the most frequently
applied methods to estimate the Weibull distribution parameters
are revised and compared in [11]. In another study [12], a new
technique was developed to estimate Weibull distribution param-
eters for wind energy applications, called the power density (PD)
method. Estimating the energy output for small-scale wind power
generators is the subject of article [13]. Article [14] presents the
development of compressed wind speed data to be used in wind
energy and performance calculations of standalone or hybrid wind
energy systems.

Even though a number of new mathematical functions have
been proposed for modeling wind speed probability density distri-
butions, the Weibull function continues to be the most popular
model in literature. Aimed at determining such functions to ensure
optimal unit operation, many soft computing techniques are pres-
ently used, such as fuzzy logic (FL) [15–17], artificial neural net-
works (ANNs) [18], neuro-fuzzy [19,20] and support vector
machines (SVMs) [21,22]. Soft computing is fundamentally made
to collect input/output data pairs and learn the proposed network
from this data.

Artificial neural networks (ANNs) are being more extensively
applied in various areas to overcome the problem with nonlinear
relationships and predictions [23]. Support vector machines
(SVMs) has recently gained importance in forecasting problems
related to the environment [24]. Support vector machines fall
under two main categories, namely support vector classification
(SVC) and support vector regression (SVR). SVM is a learning sys-
tem that uses a high-dimensional feature space [25]. Support vec-
tor regression (SVR) algorithms, specifically developed for
regression problems, are appealing for solving a large variety of
regression problems, since they not only take into account data
error approximation, but also the model’s generalization, i.e., capa-
bility to improve the model’s prediction when new data is being
evaluated [26,27]. SVR is based on a statistical learning theory
and structural risk minimization principle, and has successfully
been applied in nonlinear system modeling [28,29].

The SVR scheme is for the estimation of annual wind speed
probability density distribution. For the presently developed neu-
ral network, the same parameters as those required by the Weibull
function are used as input for predicting the density distributions
in this study. The SVR models were designed based on three meth-
ods of estimating the Weibull wind speed distribution parameters:
two variations of the maximum likelihood scheme as well as the
popular graphical method. In other words, the SVR models should
estimate the average two-parameter function of the Weibull distri-
bution based on the existing methods. SVR_rbf and SVR_poly were
examined. The first is a radial basis function and the second is a
polynomial function. These represent kernel functions utilized to
form qualified functions for SVM. Hence, the RBF and polynomial
functions are applied to estimate the wake effect on a wind farm
in this study.

The objective of this investigation is to establish an SVM to esti-
mate two Weibull function parameters. An attempt is made to

retrieve the correlation between effective wind speed and Weibull
parameters by SVR methodology. This system should be able to
forecast the Weibull parameters. The experimental training data
is extracted with three analytical methods, thus quantifying the
Weibull two-parameter function.

2. The Weibull distribution

This family of Weibull curves is widely applied in statistical
analysis. In wind energy analysis it is used to represent the wind
speed probability density function, commonly referred to as the
wind speed distribution. The Weibull distribution function is given
by

Pðv < v i < v þ dvÞ ¼ Pðv > 0Þ k
c

� �
v i

c

� �k�1
exp � v i

c

� �k
� �

dv ð1Þ

where c is the Weibull scale parameter, with units equal to the wind
speed units; k is the unit-less Weibull shape parameter; v is wind
speed; vi is a particular wind speed; dv is an incremental wind
speed; P(v < vi < v + dv) is the probability that the wind speed is
between v and v + dv; and P(v > 0) is the probability that the wind
speed exceeds zero.

Eq. (1) along with the other equations in this paper that refer to
probability can be applied equally well regardless of whether prob-
ability is interpreted as relative (fractional or percent) or absolute
(number of data points). For example, P(v > 0) in Eq. (1) can be
interpreted as the fractional probability that wind speed exceeds
zero or the number of hours per year that wind speed exceeds zero.

The cumulative distribution function is given by

Pðv < v iÞ ¼ Pðv P 0Þ 1� exp � v i

c

� �k
� �� 	

ð2Þ

where P(v < vi) is the probability that the wind speed is less than vi,
and P(v P 0) is the probability that the wind speed equals or
exceeds zero.

The two Weibull parameters and average wind speed are
related by

�v ¼ c � C 1þ 1
k

� �
ð3Þ

where �v is the average wind speed and C() is the gamma function.

2.1. Wind speed data

Measured wind speed data is normally available in time-series
format, in which each data point represents either instantaneous
sample or average wind speed over a time period. In some
instances, wind speed data may instead be available in frequency
distribution format. In this case, the frequency at which the wind
speed falls within various ranges (bins) is given. The methods
described in the following section can be used to estimate the Wei-
bull parameters given wind speed in either time-series or fre-
quency distribution format.

2.2. Determining the Weibull parameters

Three methods of estimating the parameters of Weibull wind
speed distribution are used in this study: two variations of the
maximum likelihood method as well as the popular graphical
method.

2.2.1. The maximum likelihood method
The Weibull distribution can be fitted to time-series wind data

using the maximum likelihood method. The shape factor k and
scale factor c are estimated using the following two equations:
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