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a b s t r a c t

Effects of variation of the thermal conductivity on forced convection in a parallel-plates channel heat
exchanger occupied by a fluid saturated porous medium are investigated analytically based on the
perturbation methods. Walls of the channel are kept at a constant heat flux. Thermal conductivity of
the medium is assumed to be a linear function of temperature (due to moderate radiation heat transfer
in cellular foams or temperature dependent conductivity of the material). The Brinkman–Forchheimer–
extended Darcy model for the flow field is used. Relations representing the temperature profile and
Nusselt number as functions of porous medium shape parameter and thermal conductivity variation
parameter are derived. Obtained Nusselt number and temperature profile are studied parametrically.
No analytical investigation based on a variable conductivity approach for Brinkman–Forchheimer–
extended Darcy model has been previously performed. Results show that a linear increase in the thermal
conductivity of the medium results in a semi-linear increase in the Nusselt number.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The porous media can be naturally formed (rocks, sand beds,
sponges, woods) or fabricated (catalytic pellets, insulations). Heat
and fluid flow through porous materials occur in a large number
of industrial applications such as oil and gas flow in reservoirs,
geothermal energy harvesting, drying, storage of absorbed solar
energy, water and mineral migration, catalytic converter for air
pollution reduction, and filtering [1,2]. Recent applications of
porous media include the flow of liquids in biological and physio-
logical processes, micro-fluidics, solar energy, geothermal energy,
and cooling of turbine blades in the hot portion of a turbo-expan-
der [3–7]. Porous medium insertion in a heat-transferring domain
is a way to increase the heat transfer rate. Today, other ways of
heat transfer rate enhancement together with the implementation
of porous media could be pioneering in the thermal performance
optimizations [8–12].

Perturbation is a powerful technique in solving equations,
especially non-linear equations governing the heat and fluid flows
in porous media. Vafai [13] analyzed the effects of variable porosity
and inertial forces on convective flow and heat transfer in the

boundary layer of an impermeable wall filled with porous media.
He used both numerical simulation and the perturbation (matched
asymptotic expansion) method and found that the variable poros-
ity is important near the wall in packed beds. Kaviany [14] solved
the Brinkman–Darcy momentum and energy equations for forced
convection inside the iso-flux channel analytically. Later, Vafai
and Kim [15] proposed closed form solutions to the Brinkman–
Forchheimer–extended Darcy momentum and energy equations
for forced convection inside an iso-flux channel filled with porous
media. Herwig and Koch [16] used the regular perturbation tech-
nique to solve the momentum and energy equations of a highly
porous matrix placed in the boundary layer of an impermeable
wall. Hooman and Ranjbar-Kani [17] used perturbation methods
(straight expansion and WKB) to solve the Darcy–Brinkman
momentum and energy equations for a pipe fully filled with porous
media. He proposed dimensionless velocity and temperature
distributions at iso-flux boundary conditions. Hooman [18] applied
both straight expansion and matched asymptotic expansion
methods to solve the Darcy–Brinkman–extended Forchheimer
momentum and energy equations for a channel fully filled with
porous media for the case of iso-flux boundary condition. He
showed that the Forchheimer number has the least effect on the
dimensionless velocity and temperature distributions among other
parameters. Recently, Dehghan et al. [19,20] investigated the local
thermal non-equilibrium (LTNE) condition for porous media
bounded by parallel-plates or tubes using the two-equation energy
model analytically. They proposed a new dimensionless number
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representing the intensity of the LTNE condition based on a pertur-
bation analysis. Also, they obtained the normalized velocity and
dimensionless temperature distributions inside the channel. They
showed that the normalized velocity is independent of the Forch-
heimer effect by the order of s�3 (u

_
¼ u

_
ðy; sÞ þ Oðs�3Þ), where s

denotes the porous medium shape parameter given by Eq. (9).
The porous medium shape parameter has a high value in practical
porous media [2,19].

Alazmi and Vafai [21] investigated on variants within the por-
ous media transport models numerically. Four major categories
in modeling the transport processes through porous media, namely
constant porosity, variable porosity, thermal dispersion, and local
thermal nonequilibrium, were analyzed in their study. They con-
cluded that in general the variances have more influence on the
velocity field than the temperature field and Nusselt. Nield and
Kuznetsov [22] studied the effects of variation of permeability
and thermal conductivity on fully developed forced convection in
fluid saturated porous media analytically. They used a linear model
for the change of permeability and thermal conductivity with
transverse direction. Their results demonstrated that the effect of
permeability variation is that an above average permeability near
the walls leads to an increase in Nusselt number. The Nusselt
number was not always a monotonic function of the conductivity
variation. They completed their study by a two-equation model
for the energy equation at the non-equilibrium condition. Nield
and Kuznetsov [23] found that the effect of local thermal non-equi-
librium is significant when the solid conductivity is greater than
the fluid conductivity. Sundaravadivelu and Tso [24] added effects
of viscosity variation to the work of Nield and Kuznetsov [22]. They
approximated the viscosity as a linear function in the transverse
direction. Their results revealed that the Nusselt number decreases
with the increase of permeability ratio of a layered medium for
strong viscosity variations, which cannot be captured if a constant
viscosity model is assumed. The above mentioned studies were at

the fully developed condition. However, effects of the viscosity var-
iation in a homogenous medium are confined to a small region
near the walls. Nield and Kuznetsov [25] extend their model (Nield
and Kuznetsov [22]) for a thermally developing flow between par-
allel-plate channels. They used a modified Graetz methodology to
define the developing temperature profile for the Darcy’s law of
motion.

All studies mentioned in the previous paragraph concerned the
case of heterogeneous porous media in which the permeability and
conductivity vary because of the structure of media. On the other
hand, effects of temperature dependent properties could be
important. Hooman and Gurgenci [26] investigated the effect of
temperature-dependent viscosity on the developed forced convec-
tion in a porous duct of rectangular cross-section analytically. They
assumed Darcy flow model, uniform heat flux at the walls, and an
inverse-linear viscosity–temperature relation. They showed that
the Nusselt number increases with reduction of the temperature-
dependent viscosity. Hooman and Gurgenci [27] investigated
effects of temperature-dependent viscosity on Bénard convection
in an enclosure filled with a porous medium numerically. They
discussed on the effects of property variation on the natural
convection. Nield and Kuznetsov [28] investigated a combined
conductive–convective–radiative process in a channel occupied
by a saturated cellular porous medium. They assumed Darcy–
Brinkman model, a constant molecular thermal conductivity, and
a temperature-dependent radiative conductivity. They obtained
an analytical solution to the case of variable conductivity for Dar-
cean flow. Nield and Kuznetsov [28] showed that the Nusselt num-
ber increases at the case of variable conductivity. Based on an
extension to work of Dehghan et al. [29], they [30] numerically
investigated a combined convection–radiation heat transfer inside
a micro-heat exchanger filled with a porous medium in the
slip-flow regime using a temperature dependent thermal conduc-
tivity. They showed that the temperature jump phenomenon

Nomenclature

cp specific heat at constant pressure (J kg�1 K�1)
CF inertial constant
Da Darcy number, K/H2

F Forchheimer number
G negative of the applied pressure gradient in flow direc-

tion (Pa m�1)
H half of the channel gap (m)
K permeability of the medium (m2)
k effective thermal conductivity of the medium (W m�1 -

K�1)
kf thermal conductivity of fluid phase (W m�1 K�1)
km effective conductivity of medium at bulk mean temper-

ature (W m�1 K�1)
ks thermal conductivity of solid phase (W m�1 K�1)
kw effective conductivity of the medium at the wall tem-

perature (W m�1 K�1)
M viscosity ratio
n mathematical power
Num Nusselt number based on km

Nuw Nusselt number based on kw

O order of magnitude
q00w heat flux at the wall (W m�2)
s porous media shape parameter
T temperature (K)
Tm bulk mean temperature (K)
Tr temperature variation parameter
Tw wall temperature (K)
u dimensionless velocity

u⁄ velocity (m s�1)
u
_

normalized velocity
u�m mean velocity (m s�1)
x�; y� dimensional coordinates (m)
y dimensionless coordinate

Greek letters
bR Rosseland mean extinction coefficient (m�1)
e linear proportionality multiplier of the variable thermal

conductivity model
h dimensionless temperature
l fluid viscosity (kg m�1 s�1)
leff effective viscosity in the Brinkman term (kg m�1 s�1)
r Stefan–Boltzmann coefficient (W m�2 K�4)
q fluid density (kg m�3)
/ porosity of the medium

Subscripts
0,1 coordinate identifier and constant value in conductivity

profile
eff effective value
f fluid phase
K permeability
m mean
s solid phase
w wall
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