FISEVIER

Contents lists available at ScienceDirect

Microchemical Journal

journal homepage: www.elsevier.com/locate/microc

Dielectric barrier discharge induced atomization of gaseous methylethylmercury after NaBEt₄ derivatization with purge and trap preconcentration for methylmercury determination in seawater by GC-AFS

Qian He^a, Xueke Yu^b, Yanbin Li^a, Huijun He^a, Jing Zhang^{a,c,*}

- a Key Lab of Marine Chemistry Theory & Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- ^b College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
- ^c Earth and Environmental System, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan

ARTICLE INFO

Keywords: Dielectric barrier discharge Methylethylmercury atomization Derivatization preconcentration Methylmercury determination Seawater

ABSTRACT

A novel method suitable for methylmercury (CH_3Hg) analysis in seawater by gas chromatography (GC)-atomic fluorescence spectrometry (AFS) based on dielectric barrier discharge (DBD) induced atomization of gaseous methylethylmercury ($CH_3HgC_2H_5$) after sodium tetraethylborate ($NaBEt_4$) derivatization with purge and trap preconcentration was developed in this work. In the proposed method, with $NaBEt_4$ used as derivatization reagent, the nonvolatile CH_3Hg could be converted to the gaseous $CH_3HgC_2H_5$ and trapped in a quartz tube with Tenax sorbent for preconcentration. A DBD atomizer was employed for the atomization of $CH_3HgC_2H_5$ to Hg^0 between the GC separation and AFS detection instead of the conventional thermal decomposition atomizer, which had not been reported before. The DBD atomizer not only produces a comparable atomization efficiency for $CH_3HgC_2H_5$ to the thermal decomposition atomizer, but also can be operated at room temperature with low power consumption (5 W). The effects of DBD input discharge voltage, DBD discharge distance, N_2 gas purge time, and thermal desorption time on CH_3Hg determination were evaluated. The method provided good reproducibility (RSD, 2.0%) and low detection limits of CH_3Hg (LOD, 0.0008 ngL^{-1}). The proposed method was validated by the analysis of a certified reference material (GBW08675) and successfully applied to the determination of CH_3Hg in sub ngL^{-1} level in different seawater samples.

1. Introduction

Among the most concerned heavy metals, mercury has been considered as one of the most toxic elements for human health, while methylmercury (CH $_3$ Hg) has been proved to be the most toxic mercury species [1]. As CH $_3$ Hg is liable to enter and finally accumulated in human body through the seafood chain, detection of CH $_3$ Hg at trace levels in seawater is of great significance to evaluate the risk of mercury exposure to human beings.

The detection limits of CH_3Hg by the common method were usually in sub $\mu g \, L^{-1}$ level [2,3]. However, CH_3Hg in seawater is normally at trace and even ultra-trace levels ($< 1 \, ng \, L^{-1}$) [4]. In these cases, a preliminary preconcentration step is preferred [5]. Prevailing preconcentration techniques, such as solid-phase extraction [6–12], cation or anion exchange column preconcentration [1,13], sodium tetraethylborate (NaBEt₄) or sodium tetraphenylborate (NaBPr₄) derivatization with purge and trap preconcentration [14,15] or headspace extraction preconcentration [16] had been utilized for the determination

of CH3Hg in seawater or other samples. Among them, NaBEt4 or NaBPr4 derivatization with purge and trap preconcentration was most attractive and commonly utilized, attributed to its virtues of low detection limits of CH_3Hg ($< 5 pg L^{-1}$) [14,15] (see Table 1) and easy operation. Taking NaBEt4 derivatization for example, in the process of NaBEt4 derivatization with purge and trap preconcentration for CH3Hg determination, the sample is first reacted with NaBEt4, to convert the nonvolatile CH₂Hg to gaseous methylethylmercury (CH₃HgC₂H₅). This volatile adduct is then purged from solution, and trapped on a graphitic carbon column at room temperature. The CH₃HgC₂H₅ is then thermally desorbed from the column and separated by gas chromatography (GC) and finally analyzed by cold vapor atomic fluorescence spectrometry (AFS) or inductively coupled plasma mass spectrometry (ICP-MS). To detect the level of CH₃Hg in seawater, AFS is more simple than ICP-MS. However, the 900 °C thermal atomizer between the GC separation and cold vapor AFS detection to decompose CH₃HgC₂H₅ to Hg⁰ limits the analysis to some extent, due to its high temperature and high electric power. Thus, there is a need to develop an atomizer with low

^{*} Corresponding author at: Key Lab of Marine Chemistry Theory & Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China. E-mail address: jzhang@sci.u-toyama.ac.jp (J. Zhang).

Table 1
The LODs in different preconcentration methods for CH₃Hg determination in seawater.

Preconcentration method	Detection method	$CH_3Hg\ LOD\ (ng\ L^{-1})$	References
Derivatization and dynamic headspace in-tube extraction	GC-ICPMS	0.08	[16]
Sulfhydryl cotton fiber as adsorbent for solid-phase extraction	GC-AFS	0.01	[7]
Fe ₃ O ₄ /polyaniline nanoparticle as adsorbent for solid-phase extraction	GC-MS	100	[9]
Thiol-functionalized silica microspheres as adsorbent for solid-phase extraction	HPLC-ICPMS	0.013	[8]
Sulfur-based sorption material as adsorbent for solid-phase extraction	HPLC-CV-AFS	0.04	[6]
Cation exchange column preconcentration	HPLC-ICPMS	0.016	[1]
Anion exchange guard column preconcentration	HPLC-ICPMS	0.01	[13]
NaBEt ₄ derivatization purge and trap preconcentration	GC-Pyr-AFS	0.003	[14]
NaBPr ₄ derivatization purge and trap preconcentration	GC-Pyr-AFS	0.001-0.002	[15]
NaBEt ₄ derivatization purge and trap preconcentration	GC-DBD-AFS	0.0008	This work

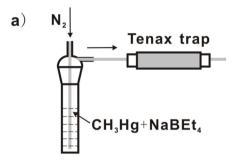
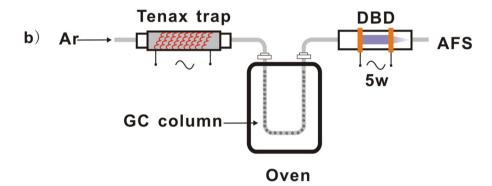



Fig. 1. Schematic diagram of DBD induced atomization after $NaBEt_4$ derivatization with purge and trap preconcentration for CH_3Hg determination by GC-AFS. a) The schematic diagram of $NaBEt_4$ derivatization following with purge and trap; b) the schematic diagram of thermal desorption following with determination by GC-AFS with DBD as atomizer.

temperature and low power for CH₃HgC₂H₅ atomization.

In the previous studies, dielectric barrier discharge (DBD) was widely used in the field of atomic spectrometry [17], i.e., excitation source [18], ionization source [19], induced vapor generation [20], and atomizer [21–33]. It is highly efficient for the atomization of hydrides and can be operated at room temperature with low power consumption (5 W). Zhu et al. [25] and Yu et al. [26] all validated the feasibility of methylmercury hydride (CH $_3$ HgH) atomization by a DBD atomizer. Thus, it makes sense to study the atomization behavior of CH $_3$ HgC $_2$ H $_5$ by DBD atomizer.

In this work, a new method suitable for CH_3Hg analysis in seawater by GC-AFS through DBD induced atomization of $CH_3HgC_2H_5$ after $NaBEt_4$ derivatization with purge and trap preconcentration was described. The DBD could be effectively used to atomize $CH_3HgC_2H_5$ into Hg^0 at room temperature with low power consumption (< 5 W). The effects of instrument configuration, including DBD input discharge voltage, DBD discharge distance, N_2 gas purge time, and thermal desorption time, on CH_3Hg determination were evaluated in this work. Finally, the applicability of the proposed method on determination of CH_3Hg at sub ng L^{-1} level in seawater was tested.

2. Experiment

2.1. Instrument

A Model III AFS (Brooks Rand, USA) with a low pressure mercury lamp (253.7 nm) was used to detect the Hg⁰ species. The PMT voltage of AFS was set as -620 V. A GC column (Dalian Zhonghuida Scientific Instrument Co., Ltd., China) was used to separate the derivative CH₃HgC₂H₅ from other species. The GC column consisted of a 4 mm (inner diameter) × 6 mm (outer diameter) U-shaped silanized glass column packed with 15% OV-3 (phenyl methyl dimethyl silicone 10% phenyl) on Chromasorb White (acid-washed, dimethyldichlorosilane treated). The column temperature of GC was set as 70 °C. The Ar gas flow rate of GC was set as 30 mL min⁻¹. A DBD atomizer was used to atomize the derivative mercury species to Hg⁰. In DBD atomizer, two pieces of copper foil (6 mm wide, 20 mm length) pasted around a quartz tube (4 mm i.d., 6 mm o.d.) parallelly with a distance about 10 mm were operated as the electrodes, and the quartz tube was operated as the dielectric. A commercial ozone generator power supply (5 W, Guangzhou Jinshi Electronic Equipment Co., Ltd., Guangzhou, China) was connected to the two copper foil electrodes to sustain the DBD plasma.

Download English Version:

https://daneshyari.com/en/article/7640157

Download Persian Version:

https://daneshyari.com/article/7640157

<u>Daneshyari.com</u>