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a b s t r a c t

This article presents a numerical study of the effect of the Prandtl number on the first bifurcation of nat-
ural convection for fluids enclosed in a 2D square cavity subject to a horizontal temperature gradient. The
natural convection equations are solved using a second-order Euler–Taylor–Galerkin (ETG) finite element
method of fractional steps. Influence of the mesh resolution on the numerical investigation is analyzed
first on ten sets of uniform square element meshes while the Rayleigh numbers are 104 and 105 keeping
Pr = 0.71. Variations of the averaged Nusselt number and its relative error in the results provided by the
benchmark computation of Davis with the grids are used to find the role of mesh resolution. As for
Ra = 104 and 105, NuAVER increases first with the increase in the number of grids used. And for each Ra,
NuAVER tends to be independent of the number of elements when it is higher than 80 � 80. Grids
(101 � 101) are then used in the study to capture the first bifurcation of natural convection. The bisection
method and the flow patterns are utilized to estimate the critical Rayleigh number for 11 different fluids
for which Pr 6 1.0. It can be deduced from the results presented that RaCr decreases with the increase in
Pr. Variation of RaCr with Pr is also fitted to estimate RaCr for any fluids for which Pr 6 1.0 directly. It is
also observed that the global flow cores are inclined for each Pr and that the inclination degree increases
in anticlockwise direction with Pr.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Due to its importance in practical engineering applications and
nonlinear sciences, natural convection in fluid-filled cavities has
attracted a lot of interest in the past decades . Using a broad range
of numerical methods, the buoyant flow has thoroughly been
investigated either in 2D or 3D cavities [1–6]. What is well known
is that the natural convection inside a cavity may make the evolu-
tion of a fluid system from a stationary state to a chaotic state
through a series of bifurcations and transitions with the increase
in the Rayleigh number. Variety of flow patterns with Ra experi-
ences the same process for different fluids [6–8]. Previous studies
have shown that the primary flow instability, a transition from dif-
fusive thermal conduction to a stationary time-independent steady
flow structure, occurs at critical Rayleigh numbers in the range of
103–104. And the value of RaC was found to be independent of
the Prandtl number. However, this value depends on the cavity as-
pect ratio. Furthermore, with the increase in Ra, a Hopf bifurcation
to a periodic oscillatory state is observed. Eventually, flow transi-
tions to chaotic state occur with further increase in Ra. The corre-
sponding Rayleigh numbers provided by different researchers

varied in the range of approximately 106–108 [7–10]. Evolution
of the flow system is characterized by a variety of flow patterns.
For each fluid, variation of flow patterns with Ra experiences the
same process. In fact, the phenomenon is intricate even for station-
ary states because of the interactions between the boundary layers
and the flow cores. There are more than one global flow cores with
the increase in Ra. Two cores are observed at Ra in the range of
about 104–105. For Ra = 106, there have been three cores. Flow evo-
lution has experienced two bifurcations, the first and the second.
Though numerous works dealing with the topic of natural convec-
tion in closed cavities are available, none of them report on the
estimation of the corresponding critical Rayleigh numbers for the
first two bifurcations [1–6,8]. Moreover, in order to understand
the phenomenon more clearly, investigation into the effect of the
Prandtl number on the two bifurcations has yet to be undertaken
successfully.

In the present paper, considering the mesh resolution effect,
numerical investigations into the critical Rayleigh numbers for dif-
ferent fluids enclosed in a square cavity subject to a horizontal
temperature gradient are carried out through a second-order Eu-
ler–Taylor–Galerkin (ETG) finite element method of fractional
steps developed by the authors. Ten sets of uniform square ele-
ment meshes were generated to find the effect of mesh resolution
on the computation first. Configurations and typical mesh with
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elements are plotted in Fig. 1. In order to validate our scheme and
code, numerical studies on natural convections for Ra = 104 and 105

with Pr = 0.71 are conducted, and the results are compared with
those provided by Vaul G. Davis. Although all the results match
well with those of Davis, the averaged Nusselt (NuAVER) number
varies with the number of grids used in the computation. It in-
creases first with the increase in the number of elements. As the
grid number is higher than 81 � 81, NuAVER tends to be indepen-
dent of the number of grids. And 101 � 101 grids are then used
in the numerical simulation. Since the flow is stationary, flow pat-
terns at different values of Ra and the bisection method are used to
capture the first bifurcation of natural convection. RaCr is defined
as the onset of the second global flow core. The values of RaCr for
10 different fluids with Pr 6 1.0 are computed to find the influence
of Pr on the first bifurcation of natural convection. It can be de-
duced from the given results that RaCr decreases with the increase
in Pr. The curve of RaCr vs. Pr is fitted. The equation can be used to
estimate RaCr for fluids for which Pr 6 1.0 directly. Moreover, in our
computation, it is observed that the global cores are inclined irre-
spective of the number of the global cores. And the inclination de-
gree increases in anticlockwise direction with the increase in Pr.
For each Pr, the second flow core rounds up with Ra.

2. Mathematical formulation

Natural convections in a square cavity are governed by the dif-
ferential equations representing the conservation of mass, momen-
tum and energy. And the present study is based on the assumption
that the flow is incompressible and two dimensional. In the
momentum equation, the density factor alone is varied, whereas
the thermal physical properties of the fluid in the flow model are
kept constant.

The variables are given as follows:

xi ¼
x�i
L
; ui ¼

u�i L
a
; p ¼ p�L2

qa2 ; t ¼ t�L2

a
; h ¼ T � TC

TH � TC
;

Pr ¼ m
a
; Ra ¼ gbL3ðTH � TCÞ

ma
The governing equations of the 2D natural convection problem are
represented in a non-dimensional form as

@ui

@xi
¼ 0 ð1Þ

@ui

@t
þ uj

@ui

@xj
¼ � @p

@xi
þ Pr

@2ui

@xj@xj
þ RaPrh cos /i ð2Þ

@h
@t
þ @huj

@xj
¼ @2h
@xj@xj

ð3Þ

where the boundary conditions are as follows:

uðx;0Þ ¼ uðx;1Þ ¼ uð0; yÞ ¼ uð1; yÞ ¼ 0 ð4Þ
vðx;0Þ ¼ vðx;1Þ ¼ vð0; yÞ ¼ vð1; yÞ ¼ 0 ð5Þ
hð0; yÞ ¼ 1; hð1; yÞ ¼ 0 ð6Þ
@h
@y
ð0; xÞ ¼ @h

@y
ð1; xÞ ¼ 0 ð7Þ

Here x�i ; i ¼ 1;2, are the distances measured along the horizontal
and vertical directions, respectively; xi, i = 1, 2, are corresponding
dimensionless coordinates; u�i ; i ¼ 1;2, are the velocity components;
ui, i = 1, 2, are dimensionless velocity components; p� and p are the
pressure and the dimensionless pressure; q is the density; TH and TC

are the temperature at hot and cold walls; h is the dimensionless
temperature; L is the side of the square cavity; Pr and Ra are Prandtl
and Raleigh numbers, respectively; ui, i = 1, 2, are degrees between
g! and each coordinates direction.

The heat transfer coefficient in terms of the local Nusselt num-
ber is defined as

Nul ¼ �
@h
@n

ð8Þ

where n denotes the normal direction on a plane. The averaged Nus-
selt number is the average of local Nusselt number along the wall
and is defined by the following equation: NuAVER ¼ 1

S

R S
0 ð� @h

@nÞdS.

3. Method of solution

3.1. Discretization of the momentum equations

In this study, a second-order ETG finite element method of frac-
tional steps is developed. First, for each velocity component ui

(i = 1, 2, u1 = u, u2 = v)

unþ1
i ¼ un

i þ Dt
@un

i

@t
þ Dt2

2
@2un

i

@t2 þ OðDt3Þ ð9Þ

From continuity equation we have

@un
i

@t
¼ �uj

@ui

@xj
� @p
@xi
þ Pr

@2ui

@xj@xj
þ RaPrh cos /i

 !n

ð10Þ

Substituting Eqs. (9) and (10)

Fig. 1. Configurations and 60� 60 uniform square elements.
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