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a b s t r a c t

This paper reports an analytical and numerical study of double-diffusive natural convection in a non-
Newtonian power-law fluid contained in a horizontal rectangular enclosure submitted to uniform heat
and mass fluxes along its short vertical sides, while the horizontal ones are insulated and impermeable.
The first part from this study is devoted to the numerical solution of the governing equations, and the
effect of the governing parameters, namely, the cavity aspect ratio, A, the Lewis number, Le, the buoyancy
ratio, N, the power-law behavior index, n, and the generalized Prandtl, Pr, thermal Rayleigh, RaT, numbers,
is examined. In the second part, an analytical solution, based on the parallel flow approximation in the
case of a shallow cavity (A� 1), is proposed and a good agreement is found between the two types of
solutions.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Double-diffusive natural convection, i.e. flows generated by
buoyancy due to simultaneous temperature and concentration gra-
dients, can be found in wide range of situations. In nature, such
flows are encountered in the oceans, lakes, solar ponds, shallow
coastal waters and the atmosphere. In industry, examples include
chemical processes, crystal growth, energy storage, material and
food processing, etc. For a review of the fundamental works in this
area, see, for instance [1,2].

The literature related to natural double-diffusive convection
shows that the majority of analytical, numerical and experimental
investigations were focused on the enclosures of rectangular form.
On this subject, the books of Bejan [3], Platten and Legros [4] and
Nield and Bejan [5] constitute basic references.

In the past, many studies concerning Newtonian fluid flows in
porous layers and fluid-filled cavities, driven simultaneously by
thermal and solutal buoyancy effects, were carried out. A literature
review reveals that studies on double-diffusive convection in
enclosures can be classified under three types, according to their
thermal and solutal boundary conditions. In the first type, the cav-
ity is subjected to a vertical solutal gradient and a horizontal ther-
mal one. For this situation, both experimental [6,7] and numerical

[8,9] results show the formation of multi-layered roll cells sepa-
rated by near-horizontal shape interfaces. In addition, the exis-
tence of multiple steady state solutions is possible [10] for a
given set of the governing parameters. In the second type, both
the temperature and concentration gradients are imposed trans-
versally [11,12]. In such a case, as was observed for a porous layer
[11], there exists a region in the plane (N = buoyancy ratio, Le = Le-
wis number) where the convective flow is not possible regardless
of the Rayleigh, RT, and Darcy, Da, numbers values. For a fluid-filled
cavity [12], the onset of thermosolutal convection was studied,
using Galerkin and finite element methods, and the thresholds
for finite-amplitude, oscillatory and monotonic convection insta-
bilities were determined explicitly in terms of the governing
parameters. In diffusive mode, where solute is stabilizing, it was
demonstrated that, when the thermal to solutal diffusivity ratio
is greater than unity, overstability and subcritical convection
may set in at a value of RaT well below the threshold of monotonic
instability. In an infinite layer with rigid boundaries, the wave-
length, at the onset of overstability, was found to be a function
of the governing parameters. Analytical solutions, for finite-ampli-
tude convection, were derived on the basis of a weak nonlinear
perturbation theory, for general cases, and on the basis of the
parallel flow approximation, for a shallow enclosure subject to
Neumann boundary conditions. The stability of the parallel flow
solution was studied and the threshold for Hopf bifurcation was
determined. For a relatively large enclosure aspect ratio, the
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numerical solution indicates horizontally travelling waves devel-
oping near the threshold of the oscillatory convection. Multiple
confined steady and unsteady states were found to coexist. In the
third type, both the thermal and solutal gradients are imposed lat-
erally [13–15]. For a vertical fluid-filled enclosure [13], in the first
part of the analytical study, a scale analysis was applied to the two
extreme cases of heat and mass-transfer-driven flows, while in the
second part a parallel flow solution was reported for tall enclo-
sures. Solutions for the flow, temperature and concentration fields
and Nusselt and Sherwood numbers were obtained in terms of the
problem governing parameters. In the limits of heat and solute-dri-
ven flows a good agreement was obtained between the predictions
of the scale analysis and the analytical solution. The numerical
solution of the complete governing equations, for the two-dimen-
sional flow, was found to agree well with the analytical one. When
the tall vertical cavity is a Darcy porous layer [14], a numerical
study was performed to validate the results of analytical predic-
tions. Hence, it was demonstrated in the case of opposing flows
(N < 0) that there exists a domain in (Lewis = Le, Buoyancy ra-
tio = N) plane where, at large values of RaT, boundary layer profiles
are obtained for the velocity and the density but not for the tem-
perature and the concentration. For a horizontal shallow cavity
filled with a binary fluid [15], an analytical and numerical study re-
vealed, in the opposing case (N = �1), the possibility of a steady
rest state solution corresponding to a purely diffusive regime.
Moreover, the existence of multiple solutions, for a given set of
the governing parameters, was demonstrated both analytically
and numerically for the values of N close to �1.

To our knowledge, for non-Newtonian fluids, except the work
performed by Benhadji and Vasseur [16] in the case of a porous
horizontal rectangular layer, where thermosolutal convection is
generated inside a power-law fluid by application of horizontal
or vertical uniform heat and mass fluxes, there is no investigations

dealing with fluid-filled enclosures. These authors examined, by
both numerical and analytical parallel flow approaches, the effect
of the governing parameters, in particular that of the power-law
behavior index, n, on the flow, temperature and concentration
fields, and on the resulting heat and mass transfers. They observed
that the shear-thinning behavior enhances the thermosolutal con-
vection while the shear-thickening one reduces it, and that the re-
sults of the two approaches agree perfectly.

Otherwise, the majority of investigations concerning non-New-
tonian fluids dealt with thermal driven buoyancy convection. In this
respect, it is advisable to mention a recent work by Lamsaadi et al.
[17], where natural convection, generated by imposing a lateral uni-
form heat flux to a horizontal slender rectangular enclosure confin-
ing non-Newtonian Ostwald–De Waele fluids, was studied by both
numerical and analytical parallel flow ways. It was observed that
the flow and temperature fields and the resulting thermal exchange
are rather sensitive to non-Newtonian behavior than to Prandtl
number variations, for its great values (Pr P 100). Furthermore,
the analytical and numerical results were found to validate each
other in the range of the governing parameters explored values.

In order to contribute to fill this gap, at least partly, the present
study focuses on natural double-diffusive convection problem in-
side a two-dimensional horizontal rectangular enclosure filled
with a non-Newtonian fluid. The cavity is submitted to uniform
heat and mass fluxes from its short vertical sides, while its long
horizontal boundaries are insulated and impermeable. The
power-law model, suggested originally by Ostwald–De Waele, is
adopted to characterize the non-Newtonian fluid behavior. In what
follows, a numerical solution of the full governing equations is ob-
tained for a wide range of the governing parameters, whose influ-
ence is amply discussed. In addition, an analytical solution, valid
for stratified flows in slender enclosures, is derived on the basis
of the parallel flow concept.

Nomenclature

A aspect ratio of the cavity, Eq. (11)
CT dimensionless temperature gradient in the x-direction
CS dimensionless concentration gradient in the x-direction
D mass diffusivity (m2/s)
g gravitational acceleration (m/s2)
H0 height of the enclosure (m)
j0 constant mass flux per unit area (kg/m2 s)
k consistency index for a power-law fluid at the reference

temperature (Pa sn)
Le lewis number, Eq. (11)
L0 length of the rectangular enclosure (m)
N buoyancy ratio, Eq. (11)
n flow behavior index for a power-law fluid at the refer-

ence temperature
Nu local Nusselt number, Eqs. (12), (13) and (33)
Nu average Nusselt number, Eqs. (14) and (33)
Pr generalised Prandtl number, Eq. (11)
q0 constant heat flux per unit area (W/m2)
RaT generalized thermal Rayleigh number, Eq. (11)
S dimensionless concentration ½¼ ðS0 � S0cÞ=DS��
S0c reference concentration at the geometric center of the

enclosure (kg/m3)
Sh local Sherwood number, Eqs. (12), (13) and (33)
Sh mean Sherwood number, Eqs. (14) and (33)
T dimensionless temperature, ½¼ ðT 0 � T 0cÞ=DT��
T 0c reference temperature at the geometric center of the

enclosure (K)
DT* characteristic temperature [=q0H0/k] (K)
DS* characteristic concentration [=j0H0/D] (kg/m3)

(u,v) dimensionless axial and vertical velocities [=(u0,v0)
(a/H0)]

(x,y) dimensionless axial and vertical co-ordinates [=(x0,y0)/
H0]

Greek symbols
a thermal diffusivity of fluid at the reference temperature

(m2/s)
bT thermal expansion coefficient of fluid at the reference

temperature (1/K)
bS solutal expansion coefficient of fluid at the reference

concentration (m3/kg)
k thermal conductivity of fluid at the reference tempera-

ture (W/m K)
l dynamic viscosity for a Newtonian fluid at the reference

temperature (Pa s)
la dimensionless apparent viscosity of fluid, Eq. (7)
q density of fluid at the reference temperature (kg/

m3)
X dimensionless vorticity, [=X0/(a/H

02)]
w dimensionless stream function, [=w0/a]

Superscript
0 dimensional variable

Subscripts
c value relative to the centre of the enclosure (x,y) = (A/

2,1/2)
* characteristic variable
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