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a b s t r a c t

It is shown that the Colebrook–White equation ⎡⎣ ⎤⎦Re D1/ 2lg 2.51/ /3.71λ λ= − + ϵ can be
solved analytically for the friction factor λ. The solution contains two infinite sums. For
given Reynolds numbers Re and relative roughnesses D/ϵ , one can create an own ap-
proximation with the required accuracy by adding a finite number of summands. The
computing time of both the iterative calculation and several approximations is being
compared. In all cases, the approximation is much faster than the iteration. Two examples
for practical applications are given.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The friction factor for turbulent flows in rough pipes is needed to calculate the pressure drop. It is also needed to
estimate the Nusselt number with the Gnielinski equation:
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It can be calculated with the Colebrook–White equation [1]:
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Here, ϵ is the average roughness height. For 0ϵ = , the Colebrook–White equation becomes the Prandtl equation for the
friction factor in smooth tubes:
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For Eq. (3), Goudar and Sonnad [2] already presented an explicit solution.
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Calculating the total pressure drop by integrating the local pressure drops and during numerical simulations the
iterations for λ can require long computing times due to high spatial and temporal resolutions. Therefore, numerous ap-
proximations have been developed. Brkić [3] gives an overview of 20 approximations from the literature and compares
them with his own equation. Brkić [4] also presented the three approximations of Boyd [5], Barry et al. [6] and Winitzki [7]
that are actually approximations of the Lambert W function. In 2013, Ćojbašić and Brkić [8] developed a very accurate
approximation. With this, the friction factor can be calculated with an accuracy of less than 0.01%.

2. Analytical solution

In the following, it is shown how Eq. (2) can be rearranged analytically for the friction factor λ. The result contains two
infinite sums. By truncating after a finite number, approximations for the friction factor with arbitrary precision can be
created. The analytical solution can be done as follows:
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Inserting Eqs. (6) and (7) into Eq. (5) yields
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Nomenclature

D diameter (m)
L length (m)
lg logarithm to the base 10
ln natural logarithm
Nu Nusselt number (dimensionless)
Pr Prandtl number (dimensionless)
Re Reynolds number (dimensionless)

ta duration of approximation (s)
ti duration of iteration (s)
W Lambert W function⎡⎣ ⎤⎦x

y
unsigned Stirling numbers of the first kind
(dimensionless)

ϵ average roughness height (m)
λ Darcy–Weisbach friction factor (dimensionless)
τ dimensionless duration t t/i aτ =

(dimensionless)
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