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a b s t r a c t

This paper presents an efficient technique of linearization of the nonlinear convective
terms present in engineering problems involving heat and mass transfer and fluid
mechanics. From two numerical applications, this technique with a method of high-
order finite differences is validated by numerical solution of transient nonlinear diffusive–
convective problem in three dimensions.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Numerical simulation of engineering problems has been successfully performed since decades ago. Problems governed
by linear differential equations have been solved easily and successfully by most numerical methods proposed in the
literature, among them we can mention the works involving, e.g., finite difference method, approximate methods for
fractional ordinary differential equations, finite element method, spectral method and matrix approach.

Based on the high-order finite difference method, that is the focus of the work, several authors have proposed various
methodologies for numerically solving the transient diffusive–convective problems. Among these papers [1], established an
exponential high-order compact alternating direction implicit method for the numerical solution of unsteady 2D
convection–diffusion problems using the Crank–Nicolson scheme for the time discretization and an exponential fourth-
order compact difference formula for the spatial discretization. The unconditionally stable character of the scheme has been
verified by a discrete Fourier analysis and the computational results showed the accuracy, efficiency and robustness of the
method [2] developed a high order compact alternating direction implicit method for solving two-dimensional unsteady
convection–diffusion problems. The method is unconditionally stable and second-order accurate in time and fourth-order
accurate in space. Three numerical studies are carried out to demonstrate its high accuracy and efficiency and, although it
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has been proposed for convection–diffusion problems, can also be used to solve pure diffusion or pure convection problems
[3] using the compact difference scheme with the operator-splitting technique solved the multidimensional time fractional
diffusion problem, investigating the stability and accuracy of the scheme [4] developed an exponential high order compact
alternating direction implicit method for solving three dimensional unsteady convection–diffusion equations. The method is
fourth-order in space, second order in time, and proved to be unconditionally stable. Three numerical experiments are
performed to demonstrate its high accuracy and efficiency and to show its superiority over the classical Douglas–Gunn
alternating direction implicit scheme and the Karaa's high-order alternating direction implicit scheme [5].

In this work, the aim is to present a formulation that uses an accurate linearization technique with easy to implement
and that uses only one iteration at each time step, optimizing the calculation of the velocity profile.

2. Formulation

In this work, we propose a solution, by the high-order finite difference method for the transient nonlinear convection–
diffusion equation in three dimensions which is given by
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where u(x,y,z,t) is the velocity field in the x,y,z-directions and υ is the kinematic viscosity.
For the temporal discretization, considering the equation given by Eq. (1), we use the method called α family of

approximation [6], in which a weighted average of the time derivative of a dependent variable is approximated on two
consecutive time steps by linear interpolation of the values of the variable at two steps
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where 0rαr1; tA[tn, tnþ1], n¼0,1,2,…,mt, where mt is the number of steps in time, and { }n refers to the value of the
enclosed quantity at time n and Δtnþ1 ¼ tnþ1�tn is the (nþ1)th time step. Adopting α¼ 0:5; we obtain the well-known
Crank–Nicolson method to carry out the time discretization as follows:

unþ1�un

Δt

� �
¼ 0:5 υ

∂2unþ1

∂x2
þυ

∂2unþ1

∂y2
þυ

∂2unþ1

∂z2
�unþ1∂unþ1

∂x
�unþ1∂unþ1

∂y
�unþ1∂unþ1

∂z

� �

þ0:5 υ
∂2un

∂x2
þυ

∂2un

∂y2
þυ

∂2un

∂z2
�un∂un

∂x
�un∂un

∂y
�un∂un

∂z

� �
ð3Þ

In order to linearize the convective terms of the previous equation will be used the technique proposed by [7] according
to which for a sufficiently small time step, these terms can be expanded into a Taylor series after the first-derivative terms.
The result is as follows:
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This method is commonly known as Newton's method since it provides a quadratic convergence [8]. Note that this
technique does not require an iterative linearization in each time step, making quicker the calculation of u.

And, substituting Eqs. (4a)–(4c) into the convective terms of Eq. (2), it yields
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