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Abstract A general method of probabilistic fatigue damage prognostics using limited and partial

information is developed. Limited and partial information refers to measurable data that are not

enough or cannot directly be used to statistically identify model parameter using traditional regres-

sion analysis. In the proposed method, the prior probability distribution of model parameters is

derived based on the principle of maximum entropy (MaxEnt) using the limited and partial infor-

mation as constraints. The posterior distribution is formulated using the principle of maximum rel-

ative entropy (MRE) to perform probability updating when new information is available and

reduces uncertainty in prognosis results. It is shown that the posterior distribution is equivalent

to a Bayesian posterior when the new information used for updating is point measurements. A

numerical quadrature interpolating method is used to calculate the asymptotic approximation for

the prior distribution. Once the prior is obtained, subsequent measurement data are used to perform

updating using Markov chain Monte Carlo (MCMC) simulations. Fatigue crack prognosis prob-

lems with experimental data are presented for demonstration and validation.
ª 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fatigue crack damage of materials exhibits significant uncer-

tainties due to the unstable and stochastic nature of crack
propagation mechanism. Accurate deterministic fatigue

damage prognosis is difficult to achieve under realistic service
conditions. Therefore uncertainty quantification for fatigue

damage prognosis using probabilistic methods is usually
required to obtain reliable results. Uncertainties in fatigue
damage prognostics arise from several sources such as material
properties, loading, environmental conditions and the geome-

try of the cracked-component. Stress intensity factor (SIF)-
driven methods are commonly used to model the fatigue crack
propagation rate. For example, the classical Paris’ equation

and its variants.1–3 To effectively use those models for fatigue
crack prognosis, sufficient fatigue testing data are required to
identify model parameters. Model prediction may be unreli-

able when usage condition is very different from the one under
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which model parameters are calibrated4, and updating
becomes highly useful and necessary. Probabilistic fatigue
damage prognostics using Bayes’ rule requires a prior proba-

bility density function (PDF) of model parameters identified
from a large set of experimental data5–7 and point measure-
ment data.8,9 Whether to choose or obtain a prior PDF

depends on what information is available. For statistical iden-
tification of model parameters, a large set of repeated tests
under the same condition is required which is very expensive.

Another approach, in the absence of any information, is to
construct a homogeneous/uniform probability distribution
that assigns to each region of the parameter space a probability
proportional to the volume of the region, which is also called

non-informative prior in a Bayesian context.10 However, some
non-informative priors cannot be normalized.11–13 In such
cases, methods based on the transformation group14,15 or ref-

erence prior16,17 can be adopted, but analysis of the specific
problem is needed. Limited or partial information, such as
the mean value for a specific function involving model param-

eters, is sometimes available from historical data or field test-
ing. However, there is no formal rule to utilize the partial
information to obtain the prior PDF of model parameters or

to perform updating in the classical Bayesian framework.
To resolve the above difficulties in probabilistic fatigue

damage prognostics, two major extensions are demanded:
(1) a reliable initial estimation method for model parameters,

which allows for estimating the model parameter PDF in a
rational manner under conditions where no enough fatigue
testing data are available, and (2) a general updating rule that

is capable of handling different types of measurement data.
The first aspect is realistic but challenging considering the fact
that exhaustively performing fatigue testing for all usage con-

ditions, particularly for unforeseen usage conditions, is not
practical. The second aspect is also demanding because not
all measurable data are in the form of point measurements

which can directly be incorporated for updating using Bayes’
rule. The objective of this study is thus not to provide a supe-
rior method to the regression method or to argue limitations of
Bayes’ rule. The objective of the study, however, is to develop

a method allowing one to identify the prior PDF of model
parameters using limited or partial information for cases where
the traditional statistical identification is difficult to apply due

to the limited number of data points available for a normal
regression, and to formulate an updating rule that is able to
handle more versatile data from usage monitoring for uncer-

tainty reduction in prognosis results. Therefore, the underlying
assumptions made in this study are: there is no or not enough
of testing data for statistical identification of model parameters
using normal regression methods and partial information is

available for updating. In the study, the probabilistic identifi-
cation of model parameters given limited or partial informa-
tion is proposed based on the principal of maximum entropy

(MaxEnt), and the updating rule that is capable of handling
additional information other than point measurements com-
monly seen in the classical Bayesian analysis is formulated

based on the principal of maximum relative entropy (MRE).
The remainder of the paper is organized as follows. First,

the probabilistic identification of model parameters using lim-

ited or partial information is derived to obtain the prior PDF
of model parameters. To evaluate the prior PDF, a numerical
quadrature interpolating method is proposed. Next, the updat-
ing rule is formulated according to the principle of MRE for

probability updating given additional data such as response
measures to reduce the uncertainty in prognostics. The result-
ing posterior PDF from updating can be evaluated either by

analytical solution (if there exists one) or approximation meth-
ods such as Markov chain Monte Carlo (MCMC) simulations.
Following that, a few fatigue prognosis problems with experi-

ment data are presented to demonstrate and validate the effec-
tiveness of the overall method.

2. Probabilistic model parameter identification with limited or

partial information

Under the condition that there is no fatigue testing data avail-

able to identify the prior PDF of model parameters using the
normal regression method, it is possible that sparse response
measurements, such as one crack size measurement from a

few cracked components being monitored, are sometimes
available. It is not possible to conduct parameter estimation
using regression since the number of data points is one and
the number of model parameters is larger than one (e.g.,

two-parameter Paris’ equation). The key idea is to treat the
mean value of the one response measure associated with each
individual target system as a mathematical expectation of the

mechanism model output. The expectation value can be con-
sidered as a constraint to formulate the prior PDF using the
principle of MaxEnt. Given a random variable h and its prob-

ability distribution pðhÞ 2 Rþ, the information entropy18 of
h 2 H is defined as

HðhÞ ¼ �
Z

H
pðhÞ ln pðhÞdh ð1Þ

The principle of MaxEnt states that the desired probability
distribution is the one that maximizes the entropy subject to all

constraints.19 The usual constraints are the mathematical
expectations of some functions that involve the variable h.
For example, the first and second order moments of h, such
as EpðhÞðhÞ and EpðhÞðh2Þ or more general EpðhÞðfðhÞÞ can serve

as the constraints. Here fð�Þ represents a general real-valued
function. The desired prior distribution pðhÞ can be derived

using the method of Lagrange multipliers. Given a general
expectation constraint EpðhÞðfðhÞÞ ¼ F, the Lagrangian K reads

K¼�
Z

H
pðhÞ lnpðhÞdhþa

Z
H
pðhÞdh�1

� �
þk

Z
H
pðhÞfðhÞdh�F

� �
ð2Þ

Maximizing K by dK=dpðhÞ ¼ 0 to obtain

pðhÞ ¼ 1

Z
expðkfðhÞÞ ð3Þ

where Z ¼
R

H expðkfðhÞÞdh is the normalizing constant, and a
and k are Lagrange multipliers. The term k is calculated by
solving

o ln
R

H expðkfðhÞÞdh
� �

ok
¼ F ð4Þ

The solution also holds true when h is a vector of variables

and fðhÞ is a set of real-valued functions. For polynomial type

of functions, such as fkðhÞ ¼
Pk

i¼0 aih
i, Eq. (4) has an analyti-

cal expression when k 6 2. Higher order moments or a more

complicated form of function can only be solved by numerical
methods.20,21 As mentioned above, the mechanism model can
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