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Abstract To control missile’s miss distance as well as terminal impact angle, by involving the time-

to-go-nth power in the cost function, an extended optimal guidance law against a constant maneu-

vering target or a stationary target is proposed using the linear quadratic optimal control theory.

An extended trajectory shaping guidance (ETSG) law is then proposed under the assumption that

the missile-target relative velocity is constant and the line of sight angle is small. For a lag-free

ETSG system, closed-form solutions for the missile’s acceleration command are derived by the

method of Schwartz inequality and linear simulations are performed to verify the closed-form

results. Normalized adjoint systems for miss distance and terminal impact angle error are presented

independently for stationary targets and constant maneuvering targets, respectively. Detailed

discussions about the terminal misses and impact angle errors induced by terminal impact angle

constraint, initial heading error, seeker zero position errors and target maneuvering, are performed.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

1. Introduction

Linear optimal guidance laws with zero miss distance and ter-

minal impact angle constraints have been extensively studied
over the past several decades. As mentioned in the literature,
the effectiveness of many warhead systems is closely related

to the miss distance and the final impact angle. For example,
to improve the attacking effect against the stiffness surface
targets, the targets deep underground or the armored vehicles,

a near-vertical attacking direction is often designed. For

anti-radiation missiles or ballistic missiles interceptors, a cer-
tain angle impact on the targets can enhance the destruction

efficiency. In addition, angle control technology is also
required to enhance survivability of the missiles against
increased capability of defense systems. So, to satisfy the

requirements above, guidance laws considering miss distance
as well as impact angle as the terminal constraints attract
increasing attention in engineering practice.

The original version of the optimal guidance law with both

miss distance and impact angle constraints is proposed in Ref.1

and is further explored in Ref.2. In Ref.1, the guidance law is
called explicit guidance and in Ref.2, it is called the trajectory

shaping guidance (TSG) law, and they both attempt to maneu-
ver the missile to a desired final position while controlling the
final impact angle. Most of the previous literature on optimal

guidance laws with impact angle constraints is based on the
linear quadratic optimal control theory and the cost function
is chosen as the traditional form in which the weighting
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function is a constant. Ryoo et al.3,4 have proposed a generalized
formulation of the optimal guidance law for a constant velocity
missile with an arbitrary system order and studied the guidance

performance for lag-free/first order autopilot. Lee et al.5 have
investigated an optimal guidance law with constraints on termi-
nal acceleration and the final impact angle. In Ref.6, a terminal

guidance law with impact attitude angle constraints has been
studied. In recent years, a new form of optimal guidance with
impact angle constraints is obtained by using a new cost function

that involves the integral of control energy divided by time-to-go
to the nth power.7–9 The time-to-go weighted cost function is first
proposed by Kerindler7 in 1973. He has proved that the propor-
tional navigation guidance (PNG) with arbitrary navigation ratio

N P 3 is also optimal if the new cost function is introduced into
the conventional linear quadratic energy optimal problem. In
Ref.8, for a stationary or a slowly moving target, the new cost

function above is adopted to derive the optimal guidance law
with impact angle constraints and the general performance of
the guidance law is investigated. Using the same cost function,

Ohlmeyer et al.8 have proposed a generalized vector explicit guid-
ance (GENEX) law for a nonmaneuvering target. In addition,
other guidance methods that control both the terminal impact

position and impact angle have been proposed in Refs.10–18.
For example, for achieving all impact angles against stationary
targets or nonstationary nonmaneuvering targets in surface-to-
surface engagements, a two-stage PNG law is proposed in

Refs.13, 14 by varying the PNG navigation ratio; in Ref.18, a slid-
ing mode-based guidance law is studied to control the terminal
impact angle.

In this paper, the optimal guidance law with impact angle
constraints for a constant maneuvering target or a stationary
target is derived using the same cost function found7–9 and is

called the extended trajectory shaping guidance (ETSG) law.
Using the Schwartz inequality,2 closed-form solutions for the
missile’s acceleration command are also derived for a lag-free

ETSG system. This extends the previous work on the control
of terminal impact angle constraints and is the main contribu-
tion of this paper.

In the optimal guidance problems above, the time-to-go is

explicitly used but is not directly measured from any devices.
Ryoo et al.4,9 have proposed an accurate and practical time-
to-go calculation method taking account of the trajectory

curve. In this paper, we assume that the time-to-go informa-
tion is exactly known.

2. Linear quadratic optimal problem solved by the sweep method

Define the linear state equations and boundary conditions as

_x ¼ Axþ Bu

xðt0Þ ¼ x0

xiðtfÞ ¼ specified

8><
>: ði ¼ 1; 2; . . . ; p; where p 6 m1Þ ð1Þ

where x is m1 dimensional state vector ðm1 ¼ 1; 2; . . .Þ; _x is the
differential of x, x0 is the initial value of x at initial time t0 and
xi(tf) is the ith value of x at terminal time tf, u is m2

dimensional control vector (m2 = 1, 2, . . . ), A is m1 · m1

dimensional state matrix and B is m1 · m2 dimensional control
matrix.

The system of Eq. (1) is assumed to be fully controllable,

with the control u unbounded. Considering the optimal control
problem below.

Find u to minimize the cost function

J ¼ 1

2

Z tf

t0

ðxTQxþ uTRuÞdt ð2Þ

where Q is m1 · m1 dimensional positive semidefinite matrix

and R is m2 · m2 dimensional positive definite matrix.
The constraints Eq. (1) can be adjoined to Eq. (2) by

multipliers vT = [v1,v2, . . . ,vp], then we can get

J ¼
Xp
i¼1

vixiðtfÞ þ
1

2

Z tf

t0

ðxTQxþ uTRuÞdt ð3Þ

where vi(i= 1, 2, . . . , p) is the positive real multiplier of each

terminal state xi(tf).
The Euler–Lagrange equations for the optimal problem

above are found to be

_k ¼ �Qx� ATk

u ¼ �R�1BTk

(
ð4Þ

In Eq. (4), k is the Lagrange multiplier vector, _k is the dif-
ferential of k.

Substituting Eq. (4) into Eq. (1), we have the two-point
boundary-value problem

_x
_k

� �
¼ A �BR�1BT

�Q �AT

" #
x

k

� �
ð5Þ

In Eq. (5), the initial value x0 and the terminal value xi(tf)
are the same as expressed in Eq. (1). The terminal value of
kjðtfÞ, which is the jth element of k at terminal time tf, can be

rewritten as

kjðtfÞ ¼
vj ðj ¼ 1; 2; . . . ; pÞ
0 ðj ¼ pþ 1; pþ 2; . . . ;m1Þ

�
ð6Þ

The two-point boundary-value problem above can be

solved by the sweep method.19

Under the assumption that the specified boundary value
½x1; x2; . . . ; xp�t¼tf as linear functions of x and [v1, v2, . . . ,vp]
as follows:

w ¼ Uxþ Gv ð7Þ

where U is p · m1 dimensional matrix, G is p · p dimensional
matrix. w and v are defined as

wT ¼ ½x1; x2; . . . ; xp�t¼tf
vT ¼ ½k1; k2; . . . ; kp�t¼tf

(
ð8Þ

From the linearity of Eqs. (1), (5) and (6), it is clear that k is a

linear function of x and v, which can be expressed as

k ¼ Sxþ Fv ð9Þ

where S is m1 · m1 dimensional matrix, F is m1 · p dimensional
matrix.

Since Eqs. (7)–(9) must be valid at terminal time tf, it is
clear that we have

SðtfÞ ¼ 0

UjiðtfÞ ¼ FijðtfÞ ¼
@wj

@xi

� �
t¼tf
¼

1 ði ¼ j; i ¼ 1; 2; � � � ;m1Þ

0 ði – j; j ¼ 1; 2; � � � ; pÞ

(

GðtfÞ ¼ 0

8>>>>><
>>>>>:

ð10Þ
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