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a b s t r a c t

We investigate the macroscopic fracture toughness of multi-phase materials within the
framework of fracture mechanics and micromechanics. Starting with the Eshelby inclusion
problem, we provide estimates on the critical energy release. We take into account the
elastic and fracture properties of the micro-constituents, the microstructure and the phase
volume fractions by considering three schemes: dilute, Mori–Tanaka and generalized self-
consistent. In turn, the theoretical model is validated by scratch tests experiments con-
ducted on glass-reinforced polymer composites. We also apply our theoretical framework
to porous clay-based ceramics. In both cases, the agreement between experiments and the-
ory is excellent.

Published by Elsevier Ltd.

1. Introduction

Despite a wealth of theoretical and experimental studies, the prediction of the fracture resistance of heterogeneous mate-
rials remains elusive. While studying ellipsoidal inclusions embedded in an elasto-plastic matrix, Iizuka and Tanaka [17]
found that the critical failure strain was determined by the cracking micromechanisms as well as the differences in elastic
moduli between the inclusion and the surrounding medium. Taking it one step further, Raveendran et al. [27] developed
upper and lower bounds for the effective fracture toughness of multi-phase materials, based on a local stress-based
approach. However, they neglected the influence of the local elastic properties on the overall fracture behavior. Alternatively,
Bower and Ortiz [7] considered a dispersion of tough particles into a brittle solid using a three-dimensional numerical model
so as to account for the increase in toughness due to diverse mechanisms such as crack bowing, crack pinning and frictional
crack bridging. Similarly, Roux et al. [29] employed a probabilistic description of the crack front to simulate the influence of
the crack front waviness on the resulting fracture toughness. Both Bower and Ortiz and Roux et al. put a strong emphasis on
the fracture surface geometry as opposed to the material microstructure as the driving parameter of the overall fracture
resistance.

In contrast, Naito et al. [26] conducted tensile and fracture tests on ceramics-reinforced polymers nanocomposites and
they showed that it is possible to enhance the fracture toughness by carefully selecting the reinforcing nanoparticle as well
as the inclusion content. Carpinteri et al. [11] suggested a law of mixtures in order to upscale the fracture properties;
although very appealing this is a very simplistic approach. Finally, Srivastava et al. [31] developed a theoretical
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Nomenclature

1 second order unit tensor
a exponent corresponding to length dimension
a constant used to assist in micromechanics derivation
aMT
i constant used to assist in Mori–Tanaka derivation for the inclusion phase

aMT
m constant used to assist in Mori–Tanaka derivation for the matrix phase

A local strain concentration tensor
Ai local strain concentration tensor of the inclusion phase

AdSC

k local strain concentration tensor of a single inclusion for self consistent case

AD
i local strain concentration tensor of the inclusion phase for dilute scheme

AMT
i local strain concentration tensor of the inclusion phase for Mori–Tanaka scheme

Am local strain concentration tensor of the matrix phase

AD
m local strain concentration tensor of the matrix phase for dilute scheme

AMT
m local strain concentration tensor of matrix phase for Mori–Tanaka scheme

b exponent corresponding to mass dimension
b constant used to assist in micromechanics derivation
bMT
i constant used to assist in Mori–Tanaka derivation for the inclusion phase

bMT
m constant used to assist in Mori–Tanaka derivation for the matrix phase

c exponent corresponding to time dimension
C elasticity tensor
Chom elasticity tensor for homogenized composite
Ci elasticity tensor for the inclusion phase
Ck elasticity tensor of a single inclusion for the self-consistent case
Cm elasticity tensor for the matrix phase
d penetration depth
E uniform macroscopic tensile strain
Ehom Young’s modulus of the homogenized composite
Ei Young’s modulus of the inclusion phase
Em Young’s modulus of the matrix phaseeE screening strain field
ehompot potential energy of the homogenized composite

ehompot t�ð Þ potential energy before crack propagation of homogenized composite

ehompot tþð Þ potential energy after complete failure of homogenized composite

� local strain field
�i local strain in the inclusion phase
�k local strain field in a single inclusion for the self consistent case
�m local strain in the matrix phase
FT scratch horizontal force
C fracture surface
Ghom macroscopic energy release rate of homogenized composite

Ghom
f effective fracture energy of homogenized composite

Gm
f effective fracture energy of the matrix phase

I fourth-order symmetric identity tensor
J spherical portion of fourth-order symmetric identity tensor
K deviatoric portion of fourth-order symmetric identity tensor
j bulk modulus
jhom homogenized bulk modulus
ji bulk modulus of the inclusion phase
jm bulk modulus of the matrix
Kc fracture toughness

Khom
c fracture toughness of homogenized composite

Kci fracture toughness of the inclusion phase
Kcm fracture toughness of the matrix phase
Km
c fracture toughness of the matrix phase

K1
c asymptotic fracture toughness as the width-to-depth ratio approaches infinity

L length dimension
M mass dimension
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