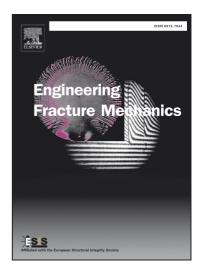
Accepted Manuscript

Determination of stress intensity factors of 3D curved non-planar cracks in FGMs subjected to thermal loading

Ali Shaghaghi Moghaddam, Marco Alfano


PII: S0013-7944(15)00416-6

DOI: http://dx.doi.org/10.1016/j.engfracmech.2015.07.040

Reference: EFM 4786

To appear in: Engineering Fracture Mechanics

Received Date: 6 February 2015 Revised Date: 30 June 2015 Accepted Date: 3 July 2015

Please cite this article as: Moghaddam, A.S., Alfano, M., Determination of stress intensity factors of 3D curved non-planar cracks in FGMs subjected to thermal loading, *Engineering Fracture Mechanics* (2015), doi: http://dx.doi.org/10.1016/j.engfracmech.2015.07.040

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

- Determination of stress intensity factors of 3D curved non-planar cracks in FGMs subjected to thermal loading
 - Ali Shaghaghi Moghaddam^a, Marco Alfano^{b,*}
- ^a Young Researchers and Elite Club, Takestan Branch, Islamic Azad University,
 Takestan, Iran
 - ^bDepartment of Mechanical, Energy and Management Engineering, University of Calabria, P. Bucci 44C, 87036 Rende (CS), Italy

8 Abstract

6

A finite element analysis is presented about 3D curved non-planar cracks in functionally graded materials (FGMs) subjected to steady state temperature gradients. The interaction energy integral is employed in conjunction with a computational strategy that does not require a priori information about crack front and crack surface curvatures. The influence of graded thermal and mechanical properties on mixed mode stress intensity factors (SIFs) is explored in detail. Results highlighted the robustness of the proposed computational framework, which therefore can be effectively deployed in the analysis of thermal fracture in FGMs containing curved non-planar cracks.

9 Keywords: FGMs, non-planar cracks, thermal SIFs, interaction integral,
10 micromechanics models

1. Introduction

12

Functionally Graded Materials (FGMs) are nonhomogenous materials whose microstructure and composition are engineered so that to achieve a continuous spatial variation of mechanical and physical properties. A significant body of literature has explored multiple aspects of FGMs, including manufacturing and analysis, as recently reviewed in [1]. Several fabrication techniques have been developed (e.g. spark plasma sintering, plasma spray technique and physical vapor deposition) and analytical and numerical efforts have been carried out in order to sustain experimental investigations and the design of FGMs systems [2, 3, 4, 5, 6, 7, 8]. One of the most important design aspect that has been emphasized in earlier works relates to the integrity of cracked components made up of FGMs subjected to thermomechanical loading. The use of graded materials for thermal protection sys-

Download English Version:

https://daneshyari.com/en/article/766414

Download Persian Version:

https://daneshyari.com/article/766414

<u>Daneshyari.com</u>