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a b s t r a c t

Differential evolution (DE) is a simple but powerful evolutionary optimization algorithm with continually
outperforming many of the already existing stochastic and direct search global optimization techniques.
DE algorithm is a new optimization method that can handle non-differentiable, non-linear, and multi-
modal objective functions. This paper presents an efficient modified differential evolution (MDE) algo-
rithm for solving optimal power flow (OPF) with non-smooth and non-convex generator fuel cost
curves. Modifications in mutation rule are suggested to the original DE algorithm, that enhance its rate
of convergence with a better solution quality. A six-bus and the IEEE 30 bus test systems with three dif-
ferent types of generator cost curves are used for testing and validation purposes. Simulation results
demonstrate that MDE algorithm provides very remarkable results compared to those reported recently
in the literature.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal power flow (OPF) is one of the main tools for optimal
operation and planning of modern power systems. The OPF is,
hence, the basic tool that allows electric utilities to determine se-
cure and economic operating conditions for an electric power sys-
tem. An OPF adjusts the controllable quantities in the system to
optimize an objective function, while satisfying a set of physical
and operational constraints. This makes the OPF problem a large-
scale highly non-linear constrained optimization problem.

The OPF problem has been solved via many traditional optimi-
zation methods such as linear programming, non-linear program-
ming, quadratic programming, Newton-based techniques and
interior point methods. A comprehensive review of various optimi-
zation techniques available in the literature is reported in Refs.
[1,2]. Usually, these methods rely on the assumption that the fuel
cost characteristic of a generating unit is a smooth, convex func-
tion. However, there are situations where it is not possible, or
appropriate, to represent the unit’s fuel cost characteristic as a con-
vex function. For example, this situation arises when valve-points,
unit prohibited operating zones, or multiple fuels are present.
Hence, the true global optimum of the problem could not be
reached easily. New numerical methods are then needed to cope
with these difficulties, specially, those with high speed search to
the optimal and not being trapped in local minima.

In recent years, many heuristic algorithms such as genetic algo-
rithms (GA) [3,4], evolutionary programming (EP) [5,6], tabu

search (TS) [7], particle swarm optimization (PSO) [8] and simu-
lated annealing (SA) [9], have been proposed to solve the OPF prob-
lem, without any restrictions on the shape of the cost curves. The
results reported were promising and encouraging for further re-
search in this direction.

Recently, a new evolutionary computation technique, called dif-
ferential evolution (DE), has been developed and introduced by
Storn and Price [10]. DE algorithm is a stochastic population-based
search method successfully applied in global optimization prob-
lems. DE combines simple arithmetic operators with the classical
operators of crossover, mutation and selection to evolve from a
randomly generated starting population to a final solution [11,12].

This paper presents an efficient modified differential evolution
(MDE) algorithm for solving optimal power flow (OPF) with non-
smooth cost functions. Modifications in mutation rule are sug-
gested to the original DE algorithm that explores the solution space
with a random localisation, enhancing its rate of convergence for a
better solution quality. In order to demonstrate the suitability of the
proposed approach, MDE algorithm was applied to the six-bus and
IEEE 30 bus test systems with three different types of generator cost
curves. Simulation results demonstrate that MDE algorithm is supe-
rior to the original DE and appears to be fast providing very remark-
able results compared to those reported in the literature recently.

2. Optimal power flow problem formulation

The OPF problem is considered as a general minimization
problem with constraints, and can be written in the following
form:
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Minimize f ðx;uÞ ð1Þ
Subject to : gðx;uÞ ¼ 0 ð2Þ
hðx;uÞ 6 0 ð3Þ

where f(x,u) is the objective function, g(x,u) is the equality con-
straints and represent typical load flow equations. h(x,u) is the sys-
tem operating constraints. x is the vector of state variables
consisting of slack bus real power PG1, load bus voltages VL, gener-
ator reactive power outputs QG, and transmission line loading Sl.
Therefore, x can be expressed as:

xT ¼ ½PG1;VL1 . . . VLNL;Q G1 . . . QGNG; Sl1 . . . SlNB� ð4Þ

where NL, NG and NB are the number of load buses, the number of
generators and the number of transmission lines, respectively.

U is the vector of control variables consisting of real power out-
puts PG except at the slack bus, generator voltages VG, transformer
tap settings T. Hence, u can be expressed as:

UT ¼ ½PG2 . . . PGNG;VG1 . . . VGNG; T1 . . . TNT� ð5Þ

where NT is the number of regulating transformers.
The objective function for the OPF reflects the cost associated

with generating power in the system. The objective function for
the entire power system can then be written as the sum of the fuel
cost model for each generator:

f ¼
XNG

i¼1

fið$=hÞ ð6Þ

where fi is the fuel cost of the ith generator.
The system operating constraints h(x, u) include:

(1) Generation constraints:
For stable operation, generator voltages, real power outputs
and reactive power outputs are restricted by the lower and
upper limits as follows:

Vmin
Gi 6 VGi 6 Vmax

Gi ; i 2 NG; ð7Þ
Pmin

Gi 6 PGi 6 Pmax
Gi ; i 2 NG; ð8Þ

Q min
Gi 6 Q Gi 6 Q max

Gi ; i 2 NG: ð9Þ

(2) Transformer constraints:
Transformer tap settings are restricted by the minimum and
maximum limits as follows:

Tmin
i 6 Ti 6 Tmax

i ; i 2 NT: ð10Þ

(3) Security constraints:
These incorporate the constraints of voltage magnitudes of
load buses as well as transmission line loadings as follows:

Vmin
Li 6 VLi 6 Vmax

Li ; i 2 NL; ð11Þ
Sli 6 Smax

li ; i 2 NB: ð12Þ

3. Overview of differential evolution algorithm

Differential evolution (DE) is a relatively recent heuristic tech-
nique designed to optimize problems over continuous domains
[10,11]. In DE, each decision variable is represented in the chromo-
some (individual) by a real number. As in any other evolutionary
algorithm, the initial population of DE is randomly generated,
and then evaluated. After that, the selection process takes place.
During the selection stage, three parents are chosen and they gen-
erate a single offspring which competes with a parent to determine
which one passes to the following generation. DE generates a sin-
gle offspring (instead of two like in the genetic algorithm) by add-

ing the weighted difference vector between two parents to a third
parent. If the resulting vector yields a lower objective function va-
lue than a predetermined population member, the newly gener-
ated vector replaces the vector to which it was compared.

An optimization task consisting of D parameters can be pre-
sented by a D-dimensional vector. In DE, a population of NP solu-
tion vectors is randomly created at the start. This population is
successfully improved over G generations by applying mutation,
crossover and selection operators, to reach an optimal solution
[10,11]. The main steps of the DE algorithm are given below:

Initialization
Evaluation
Repeat

Mutation
Crossover
Evaluation
Selection

Until (Termination criteria are met)

3.1. Initialization

Typically, each decision parameter in every vector of the initial
population is assigned a randomly chosen value from within its
corresponding feasible bounds:

Xð0Þj;i ¼ Xmin
j þ ljðX

max
j � Xmin

j Þ; i ¼ 1; . . . ;NP; j ¼ 1; . . . ;D ð13Þ

where lj denotes a uniformly distributed random number within
the range [0,1], generated anew for each value of j. Xmax

j and Xmin
j

are the upper and lower bounds of the jth decision parameter,
respectively.

3.2. Mutation

The mutation operator creates mutant vectors X 0i by perturbing
a randomly selected vector Xa with the difference of two other ran-
domly selected vectors Xb and Xc, according to the following
expression:

X0ðGÞi ¼ XðGÞa þ FðXðGÞb � XðGÞc Þ; i ¼ 1; . . . ;NP ð14Þ

where a, b, and c are randomly chosen indices, such that a, b,
c 2 {1,. . .,NP} and a 6¼ b 6¼ c 6¼ i. It should be noted that new (random)
values for a, b, and c have to be generated for each value of i. The
scaling factor F is an algorithm control parameter in the range
[0,2] which is used to adjust the perturbation size in the mutation
operator and improve algorithm convergence.

3.3. Crossover

In order to increase the diversity among the mutant parameter
vectors, crossover is introduced. To this end, a trial vector X 00i is cre-
ated from the components of each mutant vector X 0i and its corre-
sponding target vector Xi, based on a series of D-1 binomial
experiments of the following form:

X 00ðGÞj;i ¼
X 0ðGÞj;i if qj 6 CR or j ¼ q

XðGÞj;i otherwise;

8<
: ; i ¼ 1; . . . ;NP; j ¼ 1; . . . ;D

ð15Þ

where qj denotes a uniformly distributed random number within
the range [0,1), generated anew for each value of j. The crossover
constant CR which is usually chosen from within the range [0,1],
is an algorithm parameter that controls the diversity of the popula-
tion and aids the algorithm to escape from local minima. q is a ran-
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