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a b s t r a c t

In this paper, we investigate the dynamics of the stochastic autonomous and non-autonomous

predator-prey systems with nonlinear predator harvesting respectively. For the autonomous

system, we first give the existence of the global positive solution. Then, in the case of per-

sistence, we prove that there exists a unique stationary distribution and it has ergodicity by

constructing a suitable Lyapunov function. The result shows that, the relatively weaker white

noise will strengthen the stability of the system, but the stronger white noise will result in

the extinction of one or two species. Particularly, for the non-autonomous periodic system,

we show that there exists at least one nontrivial positive periodic solution according to the

theory of Khasminskii. Finally, numerical simulations illustrate our theoretical results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The dynamical relationship between predators and preys has long been one of the hot topics in ecology. During the last

decades, a lot of predator-prey systems have been proposed and widely used to describe the relationship between two species

for food supply. For commercial purposes, the harvesting of populations is commonly used in forestry and wildlife [1,2] and

the outcomes are helpful for the management of renewable resources [3,4]. Effects of harvesting on the dynamics are not only

interesting in theory, but also significant for the management and sustainability of economical resources [1,2,5–7].

Economically and biologically, the harvesting for the prey species or the predator species or both is another important topic.

The capture intensity mainly depends on the implemented harvesting strategy. It may range from rapid depletion to complete

preservation of the population. The harvesting for the predator is sometimes more interesting than for the prey, since it is often

used to control the predator size and prevent the extinction of the prey species. The harvesting function plays a key role in

describing dynamic behaviors of the predator-prey system. Three types of basic harvesting functions are as follows: (i) constant

harvesting, that is, the individuals are harvested with a constant number per unit of time, (ii) proportional harvesting H(y) = hy,

which means that, the number of species harvested per unit of time is proportional to current population and (iii) nonlinear

harvesting (Holling-II) H(y) = hy
1+by

. Obviously, constant harvesting is random search for species and proportional harvesting is

unbounded capture [9]. In some sense, nonlinear harvesting is more close to reality than the constant harvesting and proportional

harvested [9,10], since H(y) → h
b

as y → ∞, which exhibits saturation effects regarding to the stock abundance and effort-level.

However, in the natural world, the populations are inevitably affected by the environmental noise. To better describe the

ecological model, some authors introduced the white noise into the population systems to reveal richer and more complex dy-

namics, see [11–19]. Motivated by the above, we consider the predator-prey system with nonlinear predator harvesting under
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stochastic disturbance. For a stochastic Lotka–Volterra predator-prey system with regime switching, Zu et al. [20] obtained the

persistence and extinction of the system in mean and gave the sufficient conditions of the existence of stationary distribution by

constructing Lyapunov function under a certain condition. In addition, stationary distribution has been discussed in [12,16,21].

But in these work, the harvesting does’t been taken into account. One aim of this paper is to prove the existence of a unique sta-

tionary distribution and ergodicity of the predator-prey system with nonlinear predator harvesting by constructing the suitable

Lyapunov function, which does’t depend on the existence and stability of the positive equilibrium.

On the other hand, due to the seasonal variation, individual lifecycle, hunting and harvesting and so on, the birth rate, the

death rate of the population and other parameters will not remain constant, but exhibit a more-or-less periodicity. And yet, to

our knowledge, only a few authors [22–25] investigated the existence of periodic solutions of the stochastic non-autonomous

predator-prey system. In the article, we consider the existence of periodic solutions of a non-autonomous predator-prey system

with stochastic disturbance.

The rest of the paper is organized as follows. In the next section, we describe the source of a predator-prey model under

stochastic disturbance when the predator species is harvested with Holling-II harvesting function. Section 3 gives the existence

and uniqueness of the global positive solution. In Section 4, the persistence and extinction of the predator in mean are discussed

by the comparison principle. In Section 5, we show that, the autonomous system exists a unique stationary distribution and

it is ergodic under a certain condition. Numerical simulations illustrate our theoretical results, shown in Section 6. For non-

autonomous periodic system, the existence of nontrivial positive periodic solution is obtained in Section 7.

2. Formulation of mathematical models

Lokta [26] and Volterra [27] first proposed a Lotka–Volterra predator-prey model described by

dx

dt
= a1x(t) − ax(t)y(t),

(2.1)
dy

dt
= −dy(t) + ηax(t)y(t),

where x(t),y(t) denote the biomass densities of prey and predator at time t, respectively. a1 and −d are their intrinsic growth

rates in the absence of each other. a is the prey’s rate of change due to interaction. η is the conversion rate of eaten prey into new

predator. In this model, the preys grow infinitely without predators, which is unreasonable when the natural resource is limit.

Thus, a Logistic self-limitation term is often added to the prey equation. That is,

dx

dt
= x(t)(a1 − b1x(t)) − ax(t)y(t),

dy

dt
= −dy(t) + ηax(t)y(t),

(2.2)

where
a1
b1

is the environmental maximum carrying capacity of the prey in the absence of the predator. Turchin [8] has shown

that, the system (2.2) has a unique interior equilibrium which is globally stable.

For commercial significance, the predator is continuously being harvesting and will remain permanent for a long time. Gupta

et al. [10] considered the prey-predator system with nonlinear predator harvesting:

dx

dt
= x(t)(a1 − b1x(t)) − ax(t)y(t),

dy

dt
= −dy(t) + ηax(t)y(t) − hy(t)

1 + by(t)
,

(2.3)

which shows that, the harvesting function exhibits a richer dynamics than the model (2.2). And the system (2.3) has always an

axis equilibrium E1(
a1
b1

, 0), which is locally asymptotically stable if b1(d + h) > ηaa1 and is unstable if b1(d + h) < ηaa1. And

when b1(d + h) < ηaa1, the system (2.3) has a unique positive equilibrium E(x∗, y∗), where y∗ is the unique positive root of the

quadratic equation:

ηa2by2 + (dbb1 − ηa1ab + ηa2)y + b1(d + h) − ηaa1 = 0,

and x∗ = a1−ay∗
b1

. By Theorem (5.4) of [10] and the minor changes, we know that E(x∗, y∗) is stable if h <
(a1−ay∗)(1+by∗)2

by∗ and

unstable if h >
(a1−ay∗)(1+by∗)2

by∗ . And the system (2.3) undergoes a Hopf bifurcation when h = (a1−ay∗)(1+by∗)2

by∗ .

In reality, the species are more or less disturbed by environment noises. We assume the intrinsic growth rates a1 and d of the

prey and the predator are disturbed with

a1 → a1 + αḂ1(t), d → d + βḂ2(t),
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