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a b s t r a c t

In this paper, we first describe a general solution for the inhomogeneous Black–Scholes

partial differential equation with mixed boundary conditions using Mellin transform tech-

niques. Since Russian options with a finite time horizon are usually formulated into the

inhomogeneous free-boundary Black–Scholes partial differential equation with a mixed

boundary condition, we apply our method to Russian options and derive an integral equa-

tion satisfied by Russian options with a finite time horizon. Furthermore, we present some

numerical solutions and plots of the integral equation using recursive integration methods

and demonstrate the computational accuracy and efficiency of our method compared to

other competing approaches.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A Russian option is a kind of path-dependent American option which entitles the holder to either buy or sell the un-

derlying asset at the best price at which it is traded during the life of the option. Because American option holders can

exercise their rights at any instant before maturity, the valuation of such options is usually classified as optimal stopping

problems or free boundary problems. In addition, the value of these options contains an additional early exercise premium

compared to European type options. A considerable amount of research has been conducted on options which combine

features of American options with those of path-dependent options. For example, Dai and Kwok studied American floating

strike lookback options [1], and Lai and Lim researched American fixed strike lookback options [2].

The Russian option was introduced by Shepp and Shiryaev in [3] and can be considered a type of perpetual American

fixed strike lookback option. Ekström analyzed the regularity of the free boundary of Russian options with a finite time

horizon and derived partial differential equations (PDEs) satisfied by these options [4]. Peskir drew out integral equations

satisfied by Russian options with finite maturity using a stochastical local time-space formula [5]. An integral equation

was first used to solve option pricing problems in the valuation of American options. Kim [6], was the first to derive the

integral equations satisfied by the value of American options, which are known to have no closed form solutions. In general,

it is not possible to solve such integral equations analytically; instead, numerical methods have to be found that would

allow the solutions to be approximated. To date, there have been various numerical approaches. Huang et al. used recursive

integration methods [7], and Ju [8] utilized the multipiece exponential function method to solve such integral equations

numerically. The interested reader can refer to [9,10], which contain numerous approaches for solving American option
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problems from basic finite difference methods to methods using binomial trees. In this paper, we use the recursive iteration

method proposed by Huang et al. [7] to obtain the numerical solution of the integral equation satisfied by Russian options,

which we derive in subsequent sections.

A Russian option with a finite time horizon can be formulated into a parabolic PDE with mixed boundary conditions.

Kimura [11], instead of solving the PDE directly, expressed the solution using a Laplace transform. In this paper, we derive

integral equations satisfied by Russian options with a finite time horizon by solving the parabolic PDE directly using Mellin

transform techniques. The Mellin transform is a type of integral transform and can be considered as a two-sided Laplace

transform. Especially, it converts a Black–Scholes type PDE into a simple ordinary differential equation (ODE). Therefore,

the use of the inverse Mellin transform enables the analytical representation of the value function of Russian options to

be easily obtained. For this reason, the Mellin transform is widely used in option pricing. To list some examples, Panini

first introduced option pricing using the Mellin transform [12,13], whereas Yoon and Kim obtained the closed solution for

vulnerable options using double Mellin transforms [14]. Jeon et al. [15] drew a pricing formula of vulnerable geometric

Asian options using time-dependent coefficients Black Scholes partial differential equation and Jeon et al. derived integral

equations satisfied by American floating strike lookback options [16].

In this paper, we derive analytic solution for the inhomogeneous Black–Scholes equation with mixed boundary condi-

tions by using Mellin transform approach. Mixed boundary condition usually arises in the option pricing problem when the

underlying asset involves maximum process. We formulate Russian options as a PDE with mixed boundary conditions and

obtain the integral equation satisfied by Russian option values by using the analytic formula we derived. We get numerical

solutions for the integral equation by applying recursive iteration method, Also, we present the computational speed and

accuracy of recursive integration by comparing its numerical results with some of existing methods in the literature.

This paper consists of five parts. In the first part (Section 2), we formulate the problem of valuing Russian options with

a finite time horizon in terms of a free boundary PDE problem. In the second part (Section 3), we summarize the basic

definition, properties, and lemma regarding the Mellin transform for those who are unfamiliar with it. In the third part

(Section 4), we derive the general solution of the inhomogeneous Black–Scholes equation with mixed boundary conditions

with the aid of Mellin transform techniques. In the fourth part (Section 5), we first perform a premium decomposition for

Russian options, and obtain the integral equation satisfied by the free boundary for Russian options by applying the results

of Section 4. In the fifth part (Section 6), we derive the closed form solution for the perpetual Russian options. In the last

part (Section 7), we apply recursive integration methods to obtain a numerical solution for the integral equation we derived

in Section 5 and analyze the solution qualitatively.

2. Model formulation: free boundary problem

The usual assumptions for the Black–Scholes option pricing framework are adopted in this work. Let (St)t ≥ 0 denote the

price of an underlying asset of a Russian option under a risk-neutral probability measure P. The stochastic dynamics of St is

described by

dSt = (r − q)St dt + σ St dWt , S0 = s (2.1)

where r > 0 is the risk-free interest rate, q ≥ 0 is the continuous dividend rate, and σ > 0 is the constant volatility of St.

Wt is a one-dimensional standard Brownian motion process on a filtered probability space (�,Ft≥0, P), where Ft≥0 ≡ F is

the natural filtration generated by (Wt)t ≥ 0. For the pricing process (St)t ≥ 0, we define the maximum process as

Mt =
(

max
0≤γ ≤t

Sγ

)
∨ m (2.2)

where m ≥ s > 0 are given and fixed.

Consider a Russian option with a given finite time horizon T > 0. In the absence of arbitrage opportunities, the value R(t,

s, m) is a solution of the optimal stopping problem

R(t, s, m) = sup
0≤τt ≤T−t

E

[
e−rτt Mτt

| S0 = s, M0 = m
]

(2.3)

where τ t is the stopping time of the filtration F and the conditional expectation is calculated under the risk-neutral prob-

ability measure P. The random variable τt ∈ [0, T − t] is considered an optimal stopping time if it is able to provide the

supremum value of the right hand side of (2.3).

Solving the optimal stopping problem (2.3) is equivalent to finding the points (t, St, Mt) for which early exercise before

maturity would be optimal.

Let

D = {(t, s, m) ∈ [0, T − t] × (0, m] × R+} (2.4)

Then, domain D of the pricing model can be divided into two regions: the stopping region S = {(t, s, m) ∈ D | 0 < s < s∗

(t, m)}, and the continuation region SC = {(t, s, m) ∈ D | s∗(t, m) < s ≤ m}. Here, s∗(t, m) is termed the free boundary or

early exercise boundary and is given by

s∗(t, m) = inf
{

s ∈ [0, m] | (t, s, m) ∈ SC
}
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