Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engfracmech

Partially open crack model for leakage pressure analysis of bolted metal-to-metal flange

M. Beghini^a, L. Bertini^a, C. Santus^{a,*}, A. Guglielmo^b, G. Mariotti^b

^a University of Pisa, DICI – Department of Civil and Industrial Engineering, Largo L. Lazzarino 2, 56122 Pisa, Italy ^b General Electric, Oil & Gas, Nuovo Pignone, Via F. Matteucci 2, 50127 Florence, Italy

ARTICLE INFO

Article history: Received 6 May 2014 Received in revised form 5 May 2015 Accepted 3 June 2015 Available online 24 June 2015

Keywords: Metal-to-metal flange Leakage pressure Partially open crack Weight function

ABSTRACT

Predicting the leakage condition is of primary importance when designing metal-to-metal flanges. The gap between flange surfaces is regarded as a partially open crack with a zero stress intensity factor, then a model based on fracture mechanics is proposed for predicting leakage pressure. An analytical solution was found, with weight function, considering the condition of crack front at the most internal point of the bolt hole. Finite element and experimental tests validated the effectiveness of the model. In addition, the dependencies on the main flange dimensions were investigated and discussed, providing useful guidelines for optimal flange design.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Large centrifugal compressor cases are usually manufactured in two halves, connected by a bolted (or studded) flange. Although using a gasket is strictly recommended for pressure vessels [1], this leakage prevention technique cannot be used for the kind of flange investigated here, primarily because the bolted perimeter is open at the two ends in order to allow the shaft to pass through. This flange is usually called *gasketless*, or *metal-to-metal*, and the leakage of the pressurized fluid inside the vessel is prevented by the bolt preload. Bolted flanges have been widely investigated, however most studies are limited to the compact geometry design for connecting pipes [2–13], while others are dedicated to the deformation behavior of the gasket [14–20]. Research on flanges is usually focused on the structural stiffness, stress distributions, and the strength optimization of the flange parts, under bolt preload and internal pressure or other external loadings [2,3,6–12,18,21–29]. The main information from the literature, on metal-to-metal flange leakage, regards the following:

1. The leakage rate is notably affected by the flange surface microgeometry [4,5,17,30–32]:

- accurate surface flatness is required to avoid local contact discontinuity or limitation of the contact pressure;
- reduced surface roughness is recommended in order to prevent micro-leakage;
- roughness orientation not parallel to the main leakage flux direction reduces the leakage rate.
- 2. The leakage promoted by unavoidable surface unevenness, and/or poor surface roughness, can be reduced by specific sealants (e.g. any silicone based sealant) in order to fill in local irregularities on the surfaces, which would otherwise be difficult to compensate for by metal deformation produced by the bolt tightening [4,33].

http://dx.doi.org/10.1016/j.engfracmech.2015.06.005 0013-7944/© 2015 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +39 (0)50 2218007; fax: +39 (0)50 2210604. E-mail address: ciro.santus@ing.unipi.it (C. Santus).

LEFM Linear Elastic Fracture Mechanics SIF Stress Intensity Factor WF Weight Function FE Finite Element method or Finite Element analysis K model SIF a crack length x local coordinate R_{0} , R_{1} weight function G_{0} partially open crack length $\sigma_{n}(x)$ nominal stress distribution σ_{0} , σ_{1} nominal stress distribution σ_{0} , σ_{1} nominal stress of subscream for uniform and linear nominal stresses R_{0} , R_{1} weight function integrations for uniform and linear nominal stresses R_{0} , R_{1} weight function integrations for uniform R_{1} and R	Nomenclature	
SIFStress Intensity FactorWFWeight FunctionFEFinite Element method or Finite Element analysisKmode I SIFacrack lengthxlocal coordinate $h(x,a)$ weight function σ_0 , σ_1 , nominal stress distribution σ_0 , σ_1 , nominal stress parameters K_0 , K_1 K_0 , K_1 weight function integrations for uniform and linear nominal stresses f_0 , f_1 f_0 , f_1 K_0 kript function integrations for uniform and linear nominal stresses f_0 , f_1 f_0 , f_1 K_0 kript function integrations for uniform and linear nominal stresses f_0 , f_1 f_0 uniform and linear SIF coefficients V_0 V_0 vessel diameter V_1 vessel diameter V_1 vessel diameter H_1 flange widthZDolt axis position d_1 d_1 bolt stem diameter d_1 d_1 model equivalent bolt hole diameter d_1 function literses f_2 bolt preceduaters f_3 bolt preceduaters f_4 bolt preceduation f_6 bolt preceduation f_7 bolt pressure distribution angle across the flange height f_1 , f_2 bolt pressure distribution internal pressure opening force x compressive stress distribution angle across the flange height f_1 , f_2 bolt pressure distribution with unitary bolt preload cress $f_{nan}(x)$ nominal stress distribution, onde across the flange height f_1 , f_2 bo	LEEM	Linear Flastic Fracture Mechanics
WFWeight FunctionFEFinite Element method or Finite Element analysisKmode I SIFacrack lengthacrack lengthacrack length a_0 partially open crack length a_0 r. a_0 nominal stress distribution a_0 r. a_0 r. a_0 nominal stress distribution a_0 r. a_1 bolt preload strest a_1 r.		
FEFinite Element method or Finite Element analysisKmode 1 SIFacrack lengthxlocal coordinateh(x, a)weight function σ_0 , σ_1 nominal stress distribution σ_0 , σ_1 nominal stress parametersKo, K1weight function integrations for uniform and linear nominal stresses β_0 , β_1 uniform and linear SIF coefficients D_V vessel diameter V_V vessel diameter d_N flange widthZbolt pitchHflange widthZbolt hole diameter d_n bolt the diameter d_n nut circle diameter d_n model equivalent bolt hole diameter d_n flange length σ_0 polt preload stress p vessel internal pressure F_0 bolt preload force F_0 nominal stress distribution, angle across the flange height F_1 , F_2 bolt preload force $\sigma_{n,0}(x)$ nominal stress distribution plet subto plot gress $\sigma_{n,0}(x)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,0}(x)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,0}(x)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,0}(x)$ nominal stress distribution with unitary bolt preload stre	WF	
Kmode 1 SIFacrack lengthxlocal coordinate $h(x, a)$ weight functiona₀partially open crack length $\sigma_n(x)$ nominal stress distribution $\sigma_n(x)$ nominal stress distribution $\sigma_n(x)$ nominal stress parameters k_n, k_n weight function integrations for uniform and linear nominal stresses β_0, β_1 uniform and linear SIF coefficients D_V vessel diameter V_V vessel diameter k_1 stud height H flange half height H_5 stud height W flange width Z bolt axis position d_1 bolt stem diameter d_6 bolt stem diameter d_6 stud thread diameter d_1 stud thread diameter L flange leakage length L_6 flange opening length σ_8 bolt preload stress p vessel internal pressure F_6 bolt preload stress p vessel distribution, angle across the flange height T_6 , T_6 bolt preload stress $\sigma_{ang}(x)$ nominal stress distribution internal pressure $\sigma_{ang}(x)$ nominal stress distribution with unitary internal pressure $\sigma_{ang}(x)$ nominal stress distribution internal pressure $\sigma_{ang}(x)$ nominal stress distribution with unitary internal pressure $f_{ang}(x)$ nominal stress distribution internal pressure $f_{ang}(x)$ nominal stress distribution with unitary internal p		
xlocal coordinate $h(x, a)$ weight function a_{o} partially open crack length $\sigma_{n}(x)$ nominal stress distribution σ_{0}, σ_{1} nominal stress distribution for uniform and linear nominal stresses β_{0}, β_{1} weight function integrations for uniform and linear nominal stresses β_{0}, β_{1} uniform and linear SIF coefficients D_{V} vessel diameter t_{V} vessel diameter d_{H} fange half height H_{S} stud height W flange width Z bolt axis position d_{I} nut circle diameter d_{I} model equivalent bolt hole diameter d_{I} model equivalent bolt hole diameter L_{0} flange opening length σ_{B} bolt preload stress p vessel internal pressure F_{F} bolt preload stress p vessel internal pressure opening force α compressive stress distribution angle across the flange height $\sigma_{n,B}(x)$ nominal stress distribution, bolt preload component $\sigma_{n,B}(x)$ nominal stress distribution internal pressure $\sigma_{n,B}(x)$ nominal stress distribution with unitary internal pressure $\sigma_{n,B}(x)$ nominal stress distribution internal pressure $\sigma_{n,B}(x)$ nominal stress distribution with unitary internal pressure $\sigma_{n,B}(x)$ <	К	•
xlocal coordinate $h(x, a)$ weight function a_{o} partially open crack length $\sigma_{n}(x)$ nominal stress distribution σ_{0}, σ_{1} nominal stress distribution for uniform and linear nominal stresses β_{0}, β_{1} weight function integrations for uniform and linear nominal stresses β_{0}, β_{1} uniform and linear SIF coefficients D_{V} vessel diameter t_{V} vessel diameter d_{H} fange half height H_{S} stud height W flange width Z bolt axis position d_{I} nut circle diameter d_{I} model equivalent bolt hole diameter d_{I} model equivalent bolt hole diameter L_{0} flange opening length σ_{B} bolt preload stress p vessel internal pressure F_{F} bolt preload stress p vessel internal pressure opening force α compressive stress distribution angle across the flange height $\sigma_{n,B}(x)$ nominal stress distribution, bolt preload component $\sigma_{n,B}(x)$ nominal stress distribution internal pressure $\sigma_{n,B}(x)$ nominal stress distribution with unitary internal pressure $\sigma_{n,B}(x)$ nominal stress distribution internal pressure $\sigma_{n,B}(x)$ nominal stress distribution with unitary internal pressure $\sigma_{n,B}(x)$ <	а	crack length
a_{0}^{-} partially open crack length σ_{0}, σ_{1} nominal stress distribution σ_{0}, σ_{1} nominal stress parameters K_{0}, K_{1} weight function integrations for uniform and linear nominal stresses β_{0}, β_{1} uniform and linear SIF coefficients b_{V} vessel diameter t_{V} vessel diameter H flange half height H_{5} stud height W flange balf height H_{5} stud height W flange balf age solution d_{H} bolt toke diameter d_{R} bolt thread diameter d_{R} stud thread diameter d_{R} model equivalent bolt hole diameter L flange leakage length L_{0} flange pening length σ_{B} bolt preload stress P vessel internal pressure F_{B} bolt preload force F_{0} nominal stress distribution angle across the flange height F_{1}, F_{2} bolt preload force $\sigma_{n,B}(X)$ nominal stress distribution, internal pressure component $\sigma_{n,B}(X)$ nominal stress distribution, with unitary bolt preload stress $\sigma_{n,B}(X)$ nominal stress distribution internal pressure K_{1} SIF with unitary bolt preload stress $\sigma_{n,B}(X)$ nominal stress distribution officient P_{1} <td< th=""><th>x</th><th>-</th></td<>	x	-
$\sigma_n(x)$ nominal stress distribution σ_0, σ_1 nominal stress parameters κ, K_1 weight function integrations for uniform and linear nominal stresses β_0, β_1 uniform and linear SIF coefficients D_V vessel diameter V_V vessel wall thickness P_0 bolt pitch H flange half height H_5 stud height V_5 vessel wall thickness P_0 bolt axis position d_{H} bolt axis position d_{H} bolt strem diameter d_8 bolt strem diameter d_6 stud thread diameter d_1 model equivalent bolt hole diameter d_1 model equivalent bolt hole diameter d_1 flange leakage length L_0 flange leakage length L_0 flange opening length σ_8 bolt preload stress p vessel internal pressure F_8 bolt preload force $r_0_0(x)$ nominal stress distribution angle across the flange height F_1, F_2 bolt pressure distribution angle across the flange height F_1, F_2 bolt pressure distribution internal pressure component $\sigma_{n,B1}(x)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,B1}(x)$ nominal stress distribution with unitary internal pressure F_1 SIF with unitary bolt preload stress $\sigma_{n,B1}(x)$ nominal stress distribution with unitary internal pressure F_1 SIF with unitary bolt preload stress $\sigma_{n,B1}(x)$ nomi	h(x, a)	weight function
$r_{0,0}^{-1}$, nominal stress parameters k_0, k_1 weight function integrations for uniform and linear nominal stresses β_0, β_1 uniform and linear SIF coefficients v vessel diameter v vessel diameter v vessel wall thickness P_3 bolt pitch H flange half height H ₅ stud height H_5 stud height H_6 bolt axis position d_4 bolt hole diameter d_5 bolt stard diameter d_6 bolt stem diameter d_6 nut circle diameter d_6 nut circle diameter d_6 thread diameter d_6 stud thread diameter d_1 stud thread diameter d_1 model equivalent bolt hole diameter L flange leakage length L_0 flange opening length σ_8 bolt preload stress p vessel internal pressure F_6 bolt preload force r_6 internal pressure distribution angle across the flange height F_1, F_2 bolt pressure distribution angle across the flange height $r_{0,ng}(x)$ nominal stress distribution internal pressure component $\sigma_{n,p}(x)$ nominal stress distribution internal pressure component $\sigma_{n,p}(x)$ nominal stress distribution with unitary internal pressure $F_{n,m}(x)$ nominal stress distribution with unitary internal pressure $r_{n,p}(x)$ nominal stress distribution with unitary internal pressure F_6 Sift with unitary internal pressure $r_{n,p}(x)$ nominal stress distribution with unitary internal pressure F_6 weight function combination coefficient P_1 leakage pressure; the value of the internal pressure that causes leakage $P'_{1,max}$ maximum leakage pressure, among the investigated vessels $P'_{1,max}$ maximum leakage pressure, among the investigated vessels $P'_{1,max}$ maximum leakage pressure predicted with the FE model	ao	partially open crack length
K_0, K_1 weight function integrations for uniform and linear nominal stresses β_0, β_1 uniform and linear SIF coefficients D_V vessel diameter V_V vessel wall thickness P_8 bolt pitch H flange half height H_5 stud height W flange width Z bolt axis position d_H bolt stem diameter d_8 bolt stem diameter d_4 model equivalent bolt hole diameter d_4 stud thread diameter d_4 model equivalent bolt hole diameter d_4 model equivalent bolt hole diameter L flange opening length σ_8 bolt preload stress p vessel internal pressure F_8 bolt preload stress p vessel istribution compensation force $\sigma_{n,p}(x)$ nominal stress distribution, bolt preload component $\sigma_{n,p}(x)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,p}(x)$ nominal stress distribution with unitary stress $\sigma_{n,p}(x)$ nominal stress distribution with unitary stress $\sigma_{n,p}(x)$ SIF with unitary bolt preload stress $\kappa_{n,p1}(x)$ SIF with unitary bolt preload stress $\kappa_{n,p1}(x)$ SIF with unitary internal pressure G_{p} weight function combination coefficient P_1 teakage pressure; with no pressure at the partially open flange surfaces $p_{1,max}$ maximum leakage pressure, among the investigated vessels $p_{1,max}$ maximum leakage pressure,	$\sigma_{n}(x)$	nominal stress distribution
$\begin{array}{lll} \beta_0, \ \beta_1 & \mbox{uiform and linear SIF coefficients} \\ D_V & \mbox{vessel diameter} \\ t_V & \mbox{vessel diameter} \\ t_V & \mbox{vessel diameter} \\ t_V & \mbox{vessel wall thickness} \\ P_B & \mbox{bot pitch} \\ H & \mbox{flange width} \\ H & \mbox{flange width} \\ Z & \mbox{bot stem diameter} \\ d_H & \mbox{bot hole diameter} \\ d_H & \mbox{bot stem diameter} \\ d_H & \mbox{nut circle diameter} \\ d_H & \mbox{model atmetare} \\ d_H & \mbox{model atmetare} \\ d_H & \mbox{model atmetare} \\ d_H & \mbox{model equivalent bot hole diameter} \\ L & \mbox{flange opening length} \\ \sigma_B & \mbox{bot preload stress} \\ p & \mbox{vessel internal pressure} \\ F_B & \mbox{bot preload stress} \\ p & \mbox{vessel internal pressure distribution angle across the flange height} \\ F_1, F_2 & \mbox{bot preload force} \\ \sigma_{n,B}(X) & \mbox{nominal stress distribution, bot preload component} \\ \sigma_{n,B1}(X) & \mbox{nominal stress distribution, internal pressure component} \\ \sigma_{n,B1}(X) & \mbox{nominal stress distribution with unitary bot preload stress} \\ K_{L_{B1}} & \mbox{SIF with unitary bot preload stress} \\ K_{L_{L_{10}}} & \mbox{SIF with unitary bot preload stress} \\ K_{L_{10}} & \mbox{SIF with unitary internal pressure} \\ R_B & \mbox{bot preload stress} \\ K_{L_{10}} & \mbox{SIF with unitary bot preload stress} \\ K_{L_{10}} & \mbox{SIF with unitary internal pressure} \\ F_{\mu} & \mbox{bot preload stress} \\ K_{L_{10}} & \mbox{SIF with unitary bot preload stress} \\ K_{L_{10}} & \mbox{SIF with unitary bot preload stress} \\ K_{L_{10}} & \mbox{SIF with unitary internal pressure} \\ F_{\mu} & \mbox{leakage pressure; with no pressure at the partially open flange surfaces} \\ P_{L_{10}} & \mbox{leakage pressure, with no pressure at the partially open flange surfaces} \\ P_{L_{10}} & \mbox{leakage pressure, among the investigated vessels} \\ P_{L_{10}} & \mbox{leakage pressure predicted with the FE model} \\ \end{array}$	σ_0, σ_1	nominal stress parameters
V_{V} vessel diameter V_{V} vessel wall thickness P_{B} bolt pitch H flange half height H_{S} stud height W flange width Z bolt axis position d_{H} bolt stem diameter d_{R} nut circle diameter d_{R} stud thread diameter d_{I} stud thread diameter d_{I} stud thread diameter d_{I} model equivalent bolt hole diameter I flange lakage length T_{0} flange opening length σ_{B} bolt preload stress p vessel internal pressure F_{B} bolt preload force F_{p} internal pressure opening force α compressive stress distribution angle across the flange height F_{1}, F_{2} bolt pressure distribution, bolt preload component $\sigma_{n,p}(x)$ nominal stress distribution, internal pressure component $\sigma_{n,p}(x)$ nominal stress distribution with unitary bolt preload stress $K_{L,B1}$ SIF with unitary bolt preload stress $K_{L,p1}$ SIF with unitary internal pressure C_{β} weight function complexing $P_{L,max}$ maximum leakage pressure, at the partially open flange surfaces $P_{L,max}$ maximum leakage pressure at the partially open flange surfaces $P_{L,max}$ maximum leakage pressure at the partially open flange surfaces $P_{L,max}$ maximum leakage pressure at the partially open flange surfaces $P_{L,max}$ maximum leakage pressure predicted with the FE model	K_0, K_1	weight function integrations for uniform and linear nominal stresses
t_v vessel wall thickness P_{B} bolt pitch H flange half height H_s stud height W flange width Z bolt axis position d_{H} bolt stem diameter d_{B} bolt stem diameter d_{N} nut circle diameter d_{V} model equivalent bolt hole diameter d_{I} model equivalent bolt hole diameter L flange opening length σ_{B} bolt preload stress p vessel internal pressure F_{B} bolt preload force F_{1} , F_{2} bolt pressure opening force α compressive stress distribution angle across the flange height F_{1} , F_{2} bolt pressure distribution, bolt preload component $\sigma_{n,B}(X)$ nominal stress distribution, internal pressure component $\sigma_{n,B}(X)$ nominal stress distribution, internal pressure formal pressure $\sigma_{n,B}(X)$ nominal stress distribution, with unitary bolt preload stress $\sigma_{n,p1}(X)$ nominal stress distribution with unitary internal pressure K_{LB1} SIF with unitary bolt preload stress $\sigma_{n,p1}(X)$ nominal stress distribution with unitary internal pressure C_{p} weight function combination coefficient p_{1} leakage pressure: the value of the internal pressure that causes leakage P_{1} leakage pressure; the value of the internal pressure that causes leakage p_{1}^{1} leakage pressure; the value of the internal pressure that causes leakage p_{1}^{1} leakage pres	β_0, β_1	
P_{B} bolt pitch H flange half height H_{3} stud height H_{3} stud height W flange width Z bolt axis position d_{H} bolt two diameter d_{B} bolt stem diameter d_{R} stud thread diameter d_{I} mut circle diameter d_{I} model equivalent bolt hole diameter L flange leakage length L_{0} flange opening length σ_{B} bolt preload stress p vessel internal pressure F_{B} bolt preload force F_{P} internal pressure opening force α compressive stress distribution angle across the flange height F_{1} , F_{2} bolt preload force $\sigma_{n,B}(X)$ nominal stress distribution, internal pressure component $\sigma_{n,B}(X)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,p1}(X)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,p1}(X)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,p1}(X)$ nominal stress distribution with unitary bolt preload stress \mathcal{K}_{Lp1} SIF with unitary bolt preload stress \mathcal{K}_{Lp1} SIF with unitary postrese \mathcal{L}_{p} leakage pressure: the value of the internal pressure that causes leakage p_{1}^{\prime} leakage pressure; with no pressure at the partially open flange surfaces p_{1}^{\prime} leakage pressure; with no pressure at the partially open flange surfaces p_{1}^{\prime} leakage press	D_{V}	
H flange half height $H_{\rm S}$ stud height W flange width Z bolt axis position $d_{\rm H}$ bolt hole diameter $d_{\rm B}$ bolt stem diameter $d_{\rm N}$ nut circle diameter $d_{\rm L}$ stud thread diameter $d_{\rm L}$ model equivalent bolt hole diameter $L_{\rm o}$ flange opening length $L_{\rm o}$ flange opening length $\sigma_{\rm B}$ bolt preload stress p vessel internal pressure $F_{\rm B}$ bolt preload force $F_{\rm p}$ internal pressure opening force α compressive stress distribution angle across the flange height F_{1, F_2} bolt pressure distribution, bolt preload component $\sigma_{\rm n,B}(X)$ nominal stress distribution, bolt preload stress $\sigma_{\rm n,B}(X)$ nominal stress distribution with unitary bolt preload stress $\sigma_{\rm n,B}(X)$ nominal stress distribution with unitary internal pressure $K_{\rm LBI}$ SIF with unitary bolt preload stress $\sigma_{\rm n,p1}(X)$ nominal stress distribution with unitary internal pressure $K_{\rm LBI}$ SIF with unitary bolt preload stress $\sigma_{\rm n,p1}(X)$ nominal stress distribution coefficient p_1 leakage pressure: the value of the internal pressure that causes leakage $p'_{\rm Lmax}$ maximum leakage pressure, among the investigated vessels $p'_{\rm Lmax}$ maximum leakage pressure, among the investigated vessels $p'_{\rm Lmax}$ leakage pressure predicted with the FE model	-	
H_S stud height W flange width Z bolt axis position d_H bolt hole diameter d_B bolt stem diameter d_R nut circle diameter d_H model equivalent bolt hole diameter d_H model equivalent bolt hole diameter L flange leakage length L_0 flange opening length σ_B bolt preload stress p vessel internal pressure F_B bolt preload force π compressive stress distribution angle across the flange height F_1, F_2 bolt pressure opening force α compressive stress distribution forces $\sigma_{n,B}(X)$ nominal stress distribution, bolt preload component $\sigma_{n,p}(X)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,p1}(X)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,p1}(X)$ nominal stress distribution compensation forces $\sigma_{n,p1}(X)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,p1}(X)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,p1}(X)$ nominal stress distribution with unitary internal pressure K_{LB1} SIF with unitary internal pressure $\sigma_{p1}(E_{LB1})$ SIF with unitary internal pressure that causes leakage p'_{LB1} leakage pressure; the value of the internal pressure that causes leakage p'_{LB1} leakage pressure; among the investigated vessels p'_{LB2} leakage pressure predicted with the FE model	-	*
W flange width Z bolt axis position $d_{\rm H}$ bolt tole diameter $d_{\rm B}$ bolt stem diameter $d_{\rm N}$ nut circle diameter $d_{\rm L}$ stud thread diameter $d_{\rm H}$ model equivalent bolt hole diameter L flange leakage length L_0 flange opening length $\sigma_{\rm B}$ bolt preload stress p vessel internal pressure $F_{\rm B}$ bolt preload force $r_{\rm n, B}(X)$ nominal stress distribution angle across the flange height F_{1, F_2} bolt pressure opening force α compressive stress distribution angle across the flange height F_{1, F_2} bolt pressure distribution, bolt preload component $\sigma_{n, B}(X)$ nominal stress distribution, internal pressure component $\sigma_{n, p1}(X)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n, p1}(X)$ nominal stress distribution with unitary internal pressure $K_{L, p1}$ SIF with unitary bolt preload stress F_{μ}^{-} leakage pressure; the value of the internal pressure that causes leakage p_{L}^{-} leakage pressure, with no pressure at the partially open flange surfaces $p_{L, max}^{-}$ maximum leakage pressure, among the investigated v		
Zbolt axis position $d_{\rm H}$ bolt hole diameter $d_{\rm B}$ bolt stem diameter $d_{\rm N}$ nut circle diameter $d_{\rm L}$ stud thread diameter $d_{\rm H}$ model equivalent bolt hole diameterLflange leakage length L_0 flange opening length $\sigma_{\rm B}$ bolt preload stress p vessel internal pressure $F_{\rm B}$ bolt preload force F_p internal pressure opening force α compressive stress distribution angle across the flange height F_1, F_2 bolt preload forces $\sigma_{n,B}(x)$ nominal stress distribution, bolt preload component $\sigma_{n,p}(x)$ nominal stress distribution, internal pressure component $\sigma_{n,p1}(x)$ nominal stress distribution with unitary bolt preload stress K_{Lp1} SIF with unitary bolt preload stress K_{Lp1} SIF with unitary internal pressure K_{Lp1} SIF with unitary internal pressure ℓ_{β} weight function combination coefficient p_L leakage pressure; the value of the internal pressure that causes leakage p'_L leakage pressure, among the investigated vessels p'_{LEE} leakage pressure, predicted with the FE model	5	
$ \begin{array}{lll} d_{\rm H} & \mbox{bolt hole diameter} \\ d_{\rm B} & \mbox{bolt stem diameter} \\ d_{\rm B} & \mbox{bolt stem diameter} \\ d_{\rm N} & \mbox{nut circle diameter} \\ d_{\rm I} & \mbox{stud thread diameter} \\ d_{\rm H} & \mbox{model equivalent bolt hole diameter} \\ L & \mbox{flange leakage length} \\ L_{\rm o} & \mbox{flange opening length} \\ \sigma_{\rm B} & \mbox{bolt preload stress} \\ p & \mbox{vessel internal pressure} \\ F_{\rm B} & \mbox{bolt preload force} \\ F_{\rm p} & \mbox{internal pressure opening force} \\ \alpha & \mbox{compressive stress distribution angle across the flange height} \\ F_{1}, F_{2} & \mbox{bolt preload force} \\ \sigma_{n,B}(x) & \mbox{nominal stress distribution, bolt preload component} \\ \sigma_{n,p}(x) & \mbox{nominal stress distribution, with unitary bolt preload stress} \\ \sigma_{n,p1}(x) & \mbox{nominal stress distribution with unitary bolt preload stress} \\ \sigma_{L,B1} & \mbox{SIF with unitary bolt preload stress} \\ K_{L,p1} & \mbox{SIF with unitary internal pressure} \\ C_{\beta} & \mbox{weight function combination coefficient} \\ p_{L} & \mbox{leakage pressure; with no pressure at the partially open flange surfaces} \\ p_{L,max} & \mbox{maximum leakage pressure, among the investigated vessels} \\ \end{array}$		
$ \begin{array}{ll} \begin{array}{c} \sigma_{\rm B} \\ \sigma_{\rm N} \end{array} & {\rm bolt \ stem \ diameter} \\ \begin{array}{c} d_{\rm N} \\ {\rm t} \end{array} & {\rm stud \ thread \ diameter} \\ \begin{array}{c} d_{\rm t} \\ {\rm t} \end{array} & {\rm stud \ thread \ diameter} \\ \begin{array}{c} d_{\rm H} \\ {\rm model \ equivalent \ bolt \ hole \ diameter} \\ \begin{array}{c} L \\ {\rm flange \ leakage \ length} \\ L_{\rm o} \\ {\rm flange \ opening \ length} \\ \end{array} \\ \begin{array}{c} \sigma_{\rm B} \end{array} & {\rm bolt \ preload \ stress} \\ \end{array} \\ \begin{array}{c} p \\ {\rm vessel \ internal \ pressure} \\ \end{array} \\ \begin{array}{c} \sigma_{\rm B} \\ {\rm bolt \ preload \ stress} \\ \end{array} \\ \begin{array}{c} p \\ {\rm vessel \ internal \ pressure \ opening \ force} \\ \end{array} \\ \begin{array}{c} \alpha \\ {\rm compressive \ stress \ distribution \ angle \ across \ the \ flange \ height} \\ \end{array} \\ \begin{array}{c} F_{\rm 1}, \ F_{\rm 2} \\ {\rm bolt \ preload \ stress \ distribution \ compensation \ forces} \\ \end{array} \\ \begin{array}{c} \sigma_{n,{\rm B}}(x) \\ {\rm nominal \ stress \ distribution, \ bolt \ preload \ component \\ \end{array} \\ \begin{array}{c} \sigma_{n,{\rm p}}(x) \\ {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress \\ \end{array} \\ \begin{array}{c} \sigma_{n,{\rm p}}(x) \\ {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress \\ \end{array} \\ \begin{array}{c} \sigma_{n,{\rm p}}(x) \\ {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress \\ \end{array} \\ \begin{array}{c} \sigma_{n,{\rm p}}(x) \\ {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress \\ \end{array} \\ \begin{array}{c} \sigma_{n,{\rm p}}(x) \\ {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress \\ \end{array} \\ \begin{array}{c} \sigma_{n,{\rm p}}(x) \\ {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress \\ \end{array} \\ \begin{array}{c} \sigma_{n,{\rm p}}(x) \\ {\rm stress \ distribution \ with \ unitary \ bolt \ preload \ stress \\ \end{array} \\ \begin{array}{c} \sigma_{n,{\rm p}}(x) \\ {\rm stress \ distribution \ coefficient \\ \end{array} \\ \begin{array}{c} p_{\rm L} \\ \end{array} \\ \begin{array}{c} e_{\rm klage \ pressure \ the \ value \ of \ the \ internal \ pressure \ that \ causes \ leakage \\ \end{array} \\ \begin{array}{c} p_{\rm klage \ pressure \ stress \ s$	_	
$ \begin{array}{ll} d_{\rm N} & {\rm nut\ circle\ diameter} \\ d_{\rm t} & {\rm stud\ thread\ diameter} \\ d_{\rm H} & {\rm model\ equivalent\ bolt\ hole\ diameter} \\ L & {\rm flange\ leakage\ length} \\ L_0 & {\rm flange\ opening\ length} \\ \sigma_{\rm B} & {\rm bolt\ preload\ stress} \\ p & {\rm vessel\ internal\ pressure} \\ F_{\rm B} & {\rm bolt\ preload\ stress} \\ p & {\rm vessel\ internal\ pressure\ opening\ force} \\ \alpha & {\rm compressive\ stress\ distribution\ angle\ across\ the\ flange\ height} \\ F_1, F_2 & {\rm bolt\ preload\ stress\ distribution\ angle\ across\ the\ flange\ height} \\ F_{1,\ F_2} & {\rm bolt\ pressure\ distribution\ compensation\ forces} \\ \sigma_{n,{\rm B}}(x) & {\rm nominal\ stress\ distribution\ , holt\ preload\ component} \\ \sigma_{n,{\rm B}}(x) & {\rm nominal\ stress\ distribution\ with\ unitary\ bolt\ preload\ stress} \\ \sigma_{n,{\rm p}}(x) & {\rm nominal\ stress\ distribution\ with\ unitary\ brend\ pressure\ component} \\ \sigma_{n,{\rm B}}(x) & {\rm nominal\ stress\ distribution\ with\ unitary\ brend\ pressure\ component} \\ \sigma_{n,{\rm B}}(x) & {\rm nominal\ stress\ distribution\ with\ unitary\ brend\ pressure\ component} \\ \sigma_{n,{\rm B}}(x) & {\rm nominal\ stress\ distribution\ with\ unitary\ internal\ pressure\ C_{\beta} & {\rm weight\ function\ combination\ coefficient} \\ p_L & {\rm leakage\ pressure\ , with\ no\ pressure\ at\ the\ partially\ open\ flange\ surfaces \\ p_L & {\rm leakage\ pressure\ , with\ no\ pressure\ at\ the\ partially\ open\ flange\ surfaces \\ p_L & {\rm leakage\ pressure\ , with\ no\ pressure\ at\ the\ partially\ open\ flange\ surfaces \\ p_L & {\rm leakage\ pressure\ , with\ no\ pressure\ at\ the\ partially\ open\ flange\ surfaces \\ p_L & {\rm leakage\ pressure\ , with\ no\ pressure\ at\ the\ partially\ open\ flange\ surfaces \\ p_L & {\rm leakage\ pressure\ , with\ no\ pressure\ at\ the\ partially\ open\ flange\ surfaces \\ p_L & {\rm leakage\ pressure\ predicted\ with\ the\ FE\ model \ } \end{array}$		
$ \begin{array}{ll} d_{\rm H} & {\rm stud\ thread\ diameter} \\ d_{\rm H}' & {\rm model\ equivalent\ bolt\ hole\ diameter\ } \\ L & {\rm flange\ leakage\ length\ } \\ L_{\rm o} & {\rm flange\ opening\ length\ } \\ \sigma_{\rm B} & {\rm bolt\ preload\ stress\ } \\ p & {\rm vessel\ internal\ pressure\ } \\ F_{\rm B} & {\rm bolt\ preload\ force\ } \\ F_{\rm p} & {\rm internal\ pressure\ opening\ force\ } \\ \alpha & {\rm compressive\ stress\ distribution\ angle\ across\ the\ flange\ height\ } \\ F_{1},\ F_{2} & {\rm bolt\ prelsure\ distribution\ compensation\ forces\ } \\ \sigma_{n,B}(x) & {\rm nominal\ stress\ distribution\ oble\ preload\ component\ } \\ \sigma_{n,p}(x) & {\rm nominal\ stress\ distribution\ with\ unitary\ bolt\ preload\ stress\ } \\ \sigma_{n,p}(x) & {\rm nominal\ stress\ distribution\ with\ unitary\ bolt\ preload\ stress\ } \\ K_{L,B1} & {\rm SIF\ with\ unitary\ bolt\ preload\ stress\ } \\ K_{L,p1} & {\rm SIF\ with\ unitary\ internal\ pressure\ } \\ C_{\beta} & {\rm weight\ function\ combination\ coefficient\ } \\ p_{L} & {\rm leakage\ pressure\ with\ no\ pressure\ at\ the\ partial pressure\ that\ causes\ leakage\ } \\ p_{L,max\ maximum\ leakage\ pressure\ at\ mong\ the\ investigated\ vessels\ } \\ p_{L,max\ maximum\ leakage\ pressure\ predicted\ with\ the\ FE\ model } \end{array}$	5	
$ \begin{array}{ll} d_{\rm H}^{\prime} & {\rm model \ equivalent \ bolt \ hole \ diameter} \\ L & {\rm flange \ leakage \ length} \\ L_{\rm o} & {\rm flange \ opening \ length} \\ \sigma_{\rm B} & {\rm bolt \ preload \ stress} \\ p & {\rm vessel \ internal \ pressure} \\ F_{\rm B} & {\rm bolt \ preload \ force} \\ F_{\rm p} & {\rm internal \ pressure \ opening \ force} \\ \alpha & {\rm compressive \ stress \ distribution \ angle \ across \ the \ flange \ height} \\ F_{1}, \ F_{2} & {\rm bolt \ pressure \ distribution \ compensation \ forces} \\ \sigma_{\rm n,B}(x) & {\rm nominal \ stress \ distribution, \ bolt \ preload \ component} \\ \sigma_{\rm n,p}(x) & {\rm nominal \ stress \ distribution, \ internal \ pressure \ component} \\ \sigma_{\rm n,p}(x) & {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress} \\ \sigma_{\rm n,p}(x) & {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress} \\ \sigma_{\rm n,p}(x) & {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress} \\ \sigma_{\rm n,p}(x) & {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress} \\ \sigma_{\rm n,p}(x) & {\rm nominal \ stress \ distribution \ with \ unitary \ bolt \ preload \ stress} \\ \sigma_{\rm n,p1}(x) & {\rm nominal \ stress \ distribution \ with \ unitary \ internal \ pressure} \\ K_{\rm L,B1} & {\rm SIF \ with \ unitary \ bolt \ preload \ stress} \\ K_{\rm L,p1} & {\rm SIF \ with \ unitary \ internal \ pressure} \\ K_{\rm L,p1} & {\rm SIF \ with \ unitary \ internal \ pressure} \\ F_{\rm L} & {\rm leakage \ pressure: \ the \ value \ of \ the \ internal \ pressure \ that \ causes \ leakage} \\ p_{\rm L} & {\rm leakage \ pressure, \ with \ no \ pressure \ at \ the \ partially \ open \ flange \ surfaces} \\ p_{\rm L} & {\rm leakage \ pressure, \ with \ no \ pressure \ at \ the \ partially \ open \ flange \ surfaces} \\ p_{\rm L} & {\rm leakage \ pressure, \ at \ nom \ stress} \\ p_{\rm L} & {\rm leakage \ pressure, \ with \ the \ FE \ model} \\ \end{array}$		
$ \begin{array}{ll} L & \mbox{flange leakage length} \\ L_{o} & \mbox{flange opening length} \\ \sigma_{B} & \mbox{bolt preload stress} \\ p & \mbox{vessel internal pressure} \\ F_{B} & \mbox{bolt preload force} \\ F_{p} & \mbox{internal pressure opening force} \\ \alpha & \mbox{compressive stress distribution angle across the flange height} \\ F_{1}, F_{2} & \mbox{bolt pressure distribution compensation forces} \\ \sigma_{n,B}(x) & \mbox{nominal stress distribution, bolt preload component} \\ \sigma_{n,B}(x) & \mbox{nominal stress distribution, internal pressure component} \\ \sigma_{n,B1}(x) & \mbox{nominal stress distribution with unitary bolt preload stress} \\ \sigma_{n,p1}(x) & \mbox{nominal stress distribution with unitary internal pressure} \\ K_{L,B1} & \mbox{SIF with unitary internal pressure} \\ K_{L,p1} & \mbox{SIF with unitary internal pressure} \\ C_{\beta} & \mbox{weight function combination coefficient} \\ p_{L} & \mbox{leakage pressure; the value of the internal pressure that causes leakage} \\ p_{L}' & \mbox{leakage pressure, with no pressure at the partially open flange surfaces} \\ p_{L,max}' & \mbox{maximum leakage pressure, among the investigated vessels} \\ p_{L,max}' & \mbox{maximum leakage pressure predicted with the FE model} \\ \end{array}$		
$\begin{array}{ll} L_{o} & \text{flange opening length} \\ \sigma_{B} & \text{bolt preload stress} \\ p & \text{vessel internal pressure} \\ F_{B} & \text{bolt preload force} \\ F_{p} & \text{internal pressure opening force} \\ \alpha & \text{compressive stress distribution angle across the flange height} \\ F_{1}, F_{2} & \text{bolt pressure distribution compensation forces} \\ \sigma_{n,B}(x) & \text{nominal stress distribution, bolt preload component} \\ \sigma_{n,p}(x) & \text{nominal stress distribution, internal pressure component} \\ \sigma_{n,B1}(x) & \text{nominal stress distribution with unitary bolt preload stress} \\ \sigma_{n,p1}(x) & \text{nominal stress distribution with unitary internal pressure} \\ K_{L,B1} & \text{SIF with unitary bolt preload stress} \\ K_{L,p1} & \text{SIF with unitary internal pressure} \\ C_{\beta} & \text{weight function combination coefficient} \\ p_{L} & \text{leakage pressure: the value of the internal pressure that causes leakage} \\ p_{L,\text{EE}}' & \text{leakage pressure, among the investigated vessels} \\ p_{L,\text{EE}}' & \text{leakage pressure predicted with the FE model} \\ \end{array}$		1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{lll} p & \text{vessel internal pressure} \\ F_{\text{B}} & \text{bolt preload force} \\ F_{\text{p}} & \text{internal pressure opening force} \\ \alpha & \text{compressive stress distribution angle across the flange height} \\ F_{1}, F_{2} & \text{bolt pressure distribution compensation forces} \\ \sigma_{n,B}(x) & \text{nominal stress distribution, bolt preload component} \\ \sigma_{n,p}(x) & \text{nominal stress distribution, internal pressure component} \\ \sigma_{n,B1}(x) & \text{nominal stress distribution with unitary bolt preload stress} \\ \sigma_{n,p1}(x) & \text{nominal stress distribution with unitary internal pressure} \\ K_{L,B1} & \text{SIF with unitary bolt preload stress} \\ K_{L,p1} & \text{SIF with unitary internal pressure that causes leakage} \\ \rho_{L} & \text{leakage pressure; the value of the internal pressure that causes leakage} \\ p_{L}' & \text{leakage pressure, with no pressure at the partially open flange surfaces} \\ p_{L,\text{FE}}' & \text{leakage pressure predicted with the FE model} \\ \end{array}$	0	
$\begin{array}{lll} F_{\rm B} & \mbox{bolt preload force} \\ F_{\rm p} & \mbox{internal pressure opening force} \\ \alpha & \mbox{compressive stress distribution angle across the flange height} \\ F_1, F_2 & \mbox{bolt pressure distribution compensation forces} \\ \sigma_{n,{\rm B}}(x) & \mbox{nominal stress distribution, bolt preload component} \\ \sigma_{n,{\rm p}}(x) & \mbox{nominal stress distribution with unitary bolt preload stress} \\ \sigma_{n,{\rm p}1}(x) & \mbox{nominal stress distribution with unitary internal pressure} \\ K_{\rm L,{\rm B1}} & \mbox{SIF with unitary internal pressure} \\ K_{\rm L,{\rm p1}} & \mbox{SIF with unitary internal pressure} \\ C_{\beta} & \mbox{weight function combination coefficient} \\ p_{\rm L} & \mbox{leakage pressure; the value of the internal pressure that causes leakage} \\ p_{\rm L}' & \mbox{leakage pressure, with no pressure at the partially open flange surfaces} \\ p_{\rm L,{\rm FE}}' & \mbox{leakage pressure predicted with the FE model} \\ \end{array}$	-	
F_p internal pressure opening force α compressive stress distribution angle across the flange height F_1, F_2 bolt pressure distribution compensation forces $\sigma_{n,B}(x)$ nominal stress distribution, bolt preload component $\sigma_{n,p}(x)$ nominal stress distribution with unitary bolt preload stress $\sigma_{n,p1}(x)$ nominal stress distribution with unitary internal pressure $K_{L,B1}$ SIF with unitary bolt preload stress $K_{L,p1}$ SIF with unitary internal pressure C_{β} weight function combination coefficient p_L leakage pressure: the value of the internal pressure that causes leakage p'_L leakage pressure, with no pressure at the partially open flange surfaces $p'_{L,max}$ maximum leakage pressure, among the investigated vessels $p'_{L,FE}$ leakage pressure predicted with the FE model	-	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$ \begin{array}{ll} \sigma_{n,B}(x) & nominal stress distribution, bolt preload component \\ \sigma_{n,p}(x) & nominal stress distribution, internal pressure component \\ \sigma_{n,B1}(x) & nominal stress distribution with unitary bolt preload stress \\ \sigma_{n,p1}(x) & nominal stress distribution with unitary internal pressure \\ K_{L,B1} & SIF with unitary bolt preload stress \\ K_{L,p1} & SIF with unitary internal pressure \\ C_{\beta} & weight function combination coefficient \\ p_{L} & leakage pressure: the value of the internal pressure that causes leakage \\ p'_{L} & leakage pressure, with no pressure at the partially open flange surfaces \\ p'_{L,FE} & maximum leakage pressure, among the investigated vessels \\ p'_{L,FE} & leakage pressure predicted with the FE model \\ \end{array} $	-	
$ \begin{array}{ll} \sigma_{n,B}(x) & nominal stress distribution, bolt preload component \\ \sigma_{n,p}(x) & nominal stress distribution, internal pressure component \\ \sigma_{n,B1}(x) & nominal stress distribution with unitary bolt preload stress \\ \sigma_{n,p1}(x) & nominal stress distribution with unitary internal pressure \\ K_{L,B1} & SIF with unitary bolt preload stress \\ K_{L,p1} & SIF with unitary internal pressure \\ C_{\beta} & weight function combination coefficient \\ p_{L} & leakage pressure: the value of the internal pressure that causes leakage \\ p'_{L} & leakage pressure, with no pressure at the partially open flange surfaces \\ p'_{L,FE} & maximum leakage pressure, among the investigated vessels \\ p'_{L,FE} & leakage pressure predicted with the FE model \\ \end{array} $	F_1, F_2	
$ \begin{array}{ll} \sigma_{n,B1}(x) & \text{nominal stress distribution with unitary bolt preload stress} \\ \sigma_{n,p1}(x) & \text{nominal stress distribution with unitary internal pressure} \\ K_{L,B1} & \text{SIF with unitary bolt preload stress} \\ K_{L,p1} & \text{SIF with unitary internal pressure} \\ C_{\beta} & \text{weight function combination coefficient} \\ p_{L} & \text{leakage pressure: the value of the internal pressure that causes leakage} \\ p_{L}' & \text{leakage pressure, with no pressure at the partially open flange surfaces} \\ p_{L,max}' & \text{maximum leakage pressure, among the investigated vessels} \\ p_{L,FE}' & \text{leakage pressure predicted with the FE model} \end{array} $		
$\sigma_{n,p1}(x)$ nominal stress distribution with unitary internal pressure $K_{L,B1}$ SIF with unitary bolt preload stress $K_{L,p1}$ SIF with unitary internal pressure C_{β} weight function combination coefficient p_L leakage pressure: the value of the internal pressure that causes leakage p'_L leakage pressure, with no pressure at the partially open flange surfaces $p'_{L,max}$ maximum leakage pressure, among the investigated vessels p'_{LFE} leakage pressure predicted with the FE model	$\sigma_{n,p}(x)$	
$K_{L,B1}$ SIF with unitary bolt preload stress $K_{L,p1}$ SIF with unitary internal pressure C_{β} weight function combination coefficient p_L leakage pressure: the value of the internal pressure that causes leakage p'_L leakage pressure, with no pressure at the partially open flange surfaces $p'_{L,max}$ maximum leakage pressure, among the investigated vessels p'_{LFE} leakage pressure predicted with the FE model	$\sigma_{n,B1}(x)$	
$K_{L,p1}$ SIF with unitary internal pressure C_{β} weight function combination coefficient p_L leakage pressure: the value of the internal pressure that causes leakage p'_L leakage pressure, with no pressure at the partially open flange surfaces $p'_{L,max}$ maximum leakage pressure, among the investigated vessels p'_{LFE} leakage pressure predicted with the FE model	$\sigma_{n,p1}(x)$	
C_{β} weight function combination coefficient p_{L} leakage pressure: the value of the internal pressure that causes leakage p'_{L} leakage pressure, with no pressure at the partially open flange surfaces $p'_{L,max}$ maximum leakage pressure, among the investigated vessels p'_{LFE} leakage pressure predicted with the FE model		
$p_{L}^{'}$ leakage pressure: the value of the internal pressure that causes leakage $p_{L}^{'}$ leakage pressure, with no pressure at the partially open flange surfaces $p_{L,max}^{'}$ maximum leakage pressure, among the investigated vessels $p_{LFE}^{'}$ leakage pressure predicted with the FE model		• •
p'_{L} leakage pressure, with no pressure at the partially open flange surfaces $p'_{L,max}$ maximum leakage pressure, among the investigated vessels $p'_{L,FE}$ leakage pressure predicted with the FE model	C_{β}	
$p'_{L,max}$ maximum leakage pressure, among the investigated vessels $p'_{L,FE}$ leakage pressure predicted with the FE model		
$p'_{\rm LFE}$ leakage pressure predicted with the FE model	- L	
Δp^{*} relative unterence between analytical and FE models		
	$\Delta p'$	relative difference between analytical and FE models

- 3. The onset of leakage is usually associated with the loss of contact (zero pressure) between the flange mating surfaces [7,8,23,21,33], or after a critical tensile stress (usually a few MPa) required to break the sealant film [33,34].
- 4. Bolt preload scatter, which generates leakage unreliability, is caused by many factors such as uncertainty of the torque wrench relationship to preload force, bolt tightening sequence and subsequent relaxation, and even thermal effects [24,35–38].

In conclusion, although the literature is useful in terms of surface preparation, there has been no a physical description of the metal-to-metal flange leakage. We present a model which finds the value of the internal pressure that generates the leakage. This model is based on the equivalence between the flange surfaces and a partially open crack. The flange surfaces are assumed as being plain and initially flat, only deformed by the opening effect of the internal pressure, which is compensated for by tightening the preloaded bolts (or studs). The leakage was modeled as the condition when the opening front reaches the most internal point of the bolt hole, from where the fluid can exit. The use of the weight function technique, after some

Download English Version:

https://daneshyari.com/en/article/766576

Download Persian Version:

https://daneshyari.com/article/766576

Daneshyari.com