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a b s t r a c t

The paper deals with equations describing the unsteady axisymmetric laminar boundary layer

on an extensive body of revolution as well as axisymmetric jet flows. Such equations are

shown to reduce to a single nonlinear third-order PDE with variable coefficients

wtz + wzwxz − wxwzz = νzwzzz + F(t, x),

where w is a modified stream function. We describe a number of new generalized and func-

tional separable solutions to this equation, which depend on two to four arbitrary functions

of a single argument (a few solutions depend on an arbitrary function of two arguments).

We use three methods to construct the exact solutions: (i) direct method for symmetry re-

ductions, (ii) direct method of functional separation of variables (a special form of solutions

with six undetermined functions is preset and particular solutions to an auxiliary ODE are

used), and (iii) method of generalized separation of variables. Most of the solutions obtained

are expressed in terms of elementary functions, provided that the arbitrary functions are also

elementary. Such solutions, having relatively simple form and presenting significant arbitrari-

ness, can be especially useful for testing numerical and approximate analytical methods for

nonlinear hydrodynamic-type PDEs and solving certain model problems. The direct method

of functional separation of variables used in this paper can also be effective for constructing

exact solutions to other nonlinear PDEs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction. The classes of equations considered

1.1. Preliminary remarks

Hydrodynamic boundary-layer equations are important and fairly common in various areas of science and engineering (e.g.,

see [1–4]).

Exact solutions to the Navier–Stokes, boundary-layer, and related equations contribute to better understanding of qualitative

features of steady and unsteady fluid flows at large Reynolds numbers; these features include stability, non-uniqueness, spatial

localization, blow-up regimes, and others.

E-mail addresses: polyanin@ipmnet.ru (A.D. Polyanin), zhurovai@cardiff.ac.uk, zhurov@ipmnet.ru (A.I. Zhurov).
1 Principal corresponding author.

http://dx.doi.org/10.1016/j.cnsns.2015.06.035

1007-5704/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cnsns.2015.06.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2015.06.035&domain=pdf
mailto:polyanin@ipmnet.ru
mailto:zhurovai@cardiff.ac.uk
mailto:zhurov@ipmnet.ru
http://dx.doi.org/10.1016/j.cnsns.2015.06.035


12 A.D. Polyanin, A.I. Zhurov / Commun Nonlinear Sci Numer Simulat 31 (2016) 11–20

Exact solutions with significant functional arbitrariness are of particular interest because they may be used as test problems

to ensure efficient estimates of the domain of applicability and accuracy of numeric, asymptotic, and approximate analytical

methods for solving suitable nonlinear hydrodynamic-type PDEs as well as certain model problems.

To find exact solutions to the Navier–Stokes, boundary-layer, and related equations, one usually employs the classical method

for symmetry reductions [5–11] (based on the Lie group analysis of PDEs), direct method for symmetry reductions [12–17] (also

known as the Clarkson–Kruskal direct method), nonclassical method for symmetry reductions [18–20], and method of general-

ized separation of variables [21–28]. For some other, less common methods, see [29–35]. Extensive surveys of exact solutions to

the Navier–Stokes and boundary-layer equations can be found in [26,36–38].

The present paper looks for exact solutions to unsteady boundary-layer equations and employs the following three methods:

(i) direct method for symmetry reductions, (ii) direct method of functional separation of variables, based on presetting the form

of solutions and using particular solutions to an auxiliary ODE (this recent method was shown to be highly effective in [39]), and

(iii) method of generalized separation of variables.

Remark 1. For methods allowing the construction of functional separable solutions to nonlinear PDEs, see, for example, [40–45];

see also [26,46] and references in them.

1.2. Plane boundary-layer equations

The system of unsteady plane laminar boundary-layer equations is written as [1,2]:

Ut + UUx + VUy = νUyy + F(t, x), (1)

Ux + Vy = 0 (2)

where t is time, x and y are longitudinal (streamwise) and transverse coordinates (tangential and normal to the body surface), U

and V are the longitudinal and transverse fluid velocity components, F(t, x) = −px/ρ is a given function, p is the pressure, ρ is

the mass density, and ν is the kinematic viscosity of the fluid. The fluid is assumed to be incompressible.

With the stream function W defined by

U = Wy, V = −Wx, (3)

system (1), (2) reduces to a single nonlinear third-order equation [1,2]:

Wty + WyWxy − WxWyy = νWyyy + F(t, x). (4)

Exact solutions and transformations of Eq. (4) as well as different problems on the hydrodynamic boundary layer have

been addressed by many researchers. For exact solutions to this equation in the steady case (with Wt = 0), see the papers

[1–3,6,13,15,16,20,21,26]. Some exact solutions and transformations of the unsteady plane boundary-layer Eq. (4) can be found in

[7,8,10,12,14,22,23,26,32–34].

1.3. Axisymmetric unsteady laminar boundary-layer equations on an extensive body of revolution

The system of axisymmetric unsteady laminar boundary-layer equations has the form [1,47]

Ut + UUx + VUr = ν
(
Urr + r−1Ur

)
+ F(t, x), (5)

Ux + Vr + r−1V = 0, (6)

where U and V are the axial and radial components of the fluid velocity, respectively, while x and r are the axial and radial

coordinates, with the other notations remaining the same as in Eq. (4). System (5), (6) describes an axisymmetric jet flow

(F ≡ 0) or a boundary layer on an extensive body of revolution (F �≡ 0).

A self-similar solution to the steady Eqs. (5) and (6) with F(t, x) ≡ 0 for a jet flow problem was obtained in [1].

By changing to the new variables

U = 2r−1wr, V = −2r−1(wx − ν), z = 1

4
r2, (7)

where w is a modified stream function, one reduces system (5), (6) to a single nonlinear third-order equation

wtz + wzwxz − wxwzz = νzwzzz + F(t, x). (8)

Note that transformation (7) is slightly different from that used in [16,20,26] and leads to a simpler Eq. (8). The studies

[16,20,26] present a number of transformations as well as exact solutions to the equation obtained from (8) by the change of

variable w = w̄ + νx.

Remark 2. The studies [17,28,39] present one- and two-dimensional reductions and exact solutions to equations describing the

unsteady axisymmetric boundary layer on an initial part of a body of revolution. The stream function equation dealt with in [39]

can formally be obtained from Eq. (8) by replacing zwzzz with r2(x)wzzz, where r(x) is a dimensionless function that defines the

shape of the body.

In subsequent sections, we will construct new exact solutions to the unsteady nonlinear third-order PDE (8), in which allow-

able forms of the pressure gradient function F(t, x) will, as usual, be determined during the analysis.
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