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a b s t r a c t

This paper studies the dynamics of the Rayleigh piston using the modeling tools of Fractional

Calculus. Several numerical experiments examine the effect of distinct values of the parame-

ters. The time responses are transformed into the Fourier domain and approximated by means

of power law approximations. The description reveals characteristics usual in Fractional Brow-

nian phenomena.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the last decades several papers addressed a conceptual example of statistical mechanics known as the “Rayleigh

piston” [1,2]. This classical prototype system consists of a one-dimensional array of particles separated by means of an adiabatic

piston. The particles in the two cylinders have non-zero random velocities and collide sporadically with the piston provoking

its motion. While a very simple system, a kind of conceptual paradox occurs and considerable debate took place about the

steady state operating conditions. Nevertheless, most of the technical literature addresses the relationship of the system final

equilibrium conditions and the study of the complex dynamics has not attracted relevant attention.

This paper focus the dynamics of the Rayleigh piston in the perspective of Fractional Brownian motion (fBm) and Fractional

Calculus (FC). The fBm was introduced by Kolmogorov [3]. Later Mandelbrot adopted the concept of fBm to model phenomena

with self-similarity and long range effects [4]. The fBm is also called 1/f noise [5], where f denotes frequency, because its spectrum

is given by 1/f α , α > 0. The fBm is interpreted as a signature of complexity [6] and has been observed in many distinct areas [7],

namely in economics and finance [8,9], geophysics [10–15], music and speech [16–18], biology [19–23] and others. During the

last years the relation between fBm and FC was studied by some researchers [24–27]. FC emerged with the ideas of Leibniz

and several important mathematicians contributed to its development [28–32]. However, only in the last decades [33,34] FC

was recognized to be an important tool to study systems with long range memory phenomena [35–44]. FC generalizes the

operations of integration and differentiation to non-integer orders and constitutes an efficient mathematical tool for describing

natural phenomena with long-range memory effects and power law description. This paper addresses the Rayleigh piston and

its characterization by means of fBm and FC concepts.

Having these ideas in mind, this paper focus on the fBm in the perspective of FC and is organized as follows. Section 2

introduces the “Rayleigh piston”, develops the analysis in the Fourier domain, extracting several power-law parameters, and

discusses the results in the perspective of dynamical systems. Finally, Section 3 outlines the main conclusions.
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Fig. 1. The Rayleigh piston.

2. Preliminary concepts

The Rayleigh’s piston is a system consisting of two cylinders, to be denoted as 1 and 2, containing some type of fluid, and

separated by an adiabatic movable piston (Fig. 1). A brake maintains the piston at rest until time t = 0. The two fluids are in

equilibrium with pressure, volume and temperature {pi(0), Vi(0), Ti(0)}, i = 1, 2. The piston with mass M undergoes random

one-dimensional collisions with particles of mass m. Furthermore, there are ni, i = 1, 2, particles per unit volume, with Maxwell

distributed velocities at temperature Ti.

In steady state occurs a mechanical equilibrium and the pressures are identical, that is, p1(t → ∞) = p2(t → ∞). However,

nothing can be said about the final temperatures T1(t → ∞) and T2(t → ∞), since the laws of thermostatics are insufficient to

predict them. The reader can follow the discussion about this gedankenexperiment in [45–54] and references therein.

In this paper we focus the dynamics of the motion of the piston for different operating conditions under the light of FC. At

t = 0 the particles of cylinder i, i = 1, 2, are considered to have a one-dimensional probability distribution so that vi ∼ e
− v2

i
σi .

The collision phenomenon is modeled by means of the pair of initial and final velocities, (Vi, vi) and (Vf, vf), respectively. Elastic

collisions satisfy the conservation of energy and momentum:

E f + e f = Ei + ei, (1a)

Pf + p f = Pi + pi, (1b)

where subscripts i and f denote the initial and final states, P = MV and p = mv denote momenta and E = 1
2 MV 2 and e = 1

2 mv2

the kinetic energies, of the piston and particles, respectively. Therefore, the velocities of the piston and the particle after collision,

are given by:

Vf = Vi − 2m

m + M
(Vi − vi), (2a)

v f = vi − 2M

m + M
(vi − Vi). (2b)

During the following numerical simulations we adopt a time step of h = 0.5 · 10−3, an initial piston position x(0) = 0, and

two identical cylinders with unit width.

Fig. 2. Time response x(t) of the piston position for 0 ≤ t ≤ 100 (left) and 0 ≤ t ≤ 5 · 104 (right), with M = 10, m = 1, n1 = 1000, n2 = 500, σ1 = σ2 = 1.0,

h = 0.5 · 10−3.
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