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A B S T R A C T

When using spectroscopic instrumentation for quantitative analysis of mixture, spectral intensity non-
linearity and peak shift make it challenging for building calibration model. In this study, we investigated
the performance of a nonlinear model, namely nonlinear least squares with local polynomial interpolation
(NLSLPI). In NLSLPI, the parameters to be optimized are the concentrations of the components. Levenberg-
Marquardt (L-M) method is used to solve the nonlinear-least-squares optimization problem and local
polynomial interpolation is used to generate the nonlinear function for each component. We tested the
robustness of NLSLPI on a computer-simulation dataset. We also compared NLSLPI, in terms of RMSEP, to
partial least squares (PLS), classical least squares (CLS) and piecewise classical least squares (PCLS) on a
real-world dataset. Experimental results demonstrate the effectiveness of the proposed method.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Infrared (IR) spectroscopic analysis, whose advantages are no
requirement for sample preparation, fast response and high accu-
racy, has been used for the quantitative analysis of mixture in wide
applications [1-3]. In order to estimate the concentration of an
interesting component from a mixture spectrum which usually con-
tains hundreds of measurement values, chemometric algorithms are
developed.

Usually, two situations will be met when dealing with IR spec-
troscopy. The first one is that only one or more components among
the mixture are interested and most information (such as the refer-
ence spectrum of the interested component) are not obtainable. To
deal with this case, a large amount of representative samples of mix-
ture together with the concentrations of the interested component
are needed. Inverse modeling methods such as principle component
regression (PCR) [4] and partial least squares (PLS) [5] are usually
applied to predict the concentrations of the future samples. The sec-
ond case is that the mixture contains several major components
and the reference spectra of these components are known. In this
case, classical least squares (CLS) [6,7] is usually applied to simulate
the spectrum of the mixture. Assuming that the mixture spectrum
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is a linear combination of reference spectra, CLS works by finding
the concentrations that minimizes difference between the measured
spectrum and the simulated spectrum. When the linear assumption
failed, the piecewise classical least squares (PCLS) was used [8,9].
In PCLS, there are multiple reference spectra for each target com-
ponent and then multiple CLS sub-models are generated. The two
sub-models that predict concentrations in the measured spectrum
nearest to those of specific reference spectra included in the set of
sub-models are selected. The prediction value of PCLS is a weighted
sum of the values of the selected sub-models. Even though CLS is
widely used in commercial chemometric software, the investigation
of its nonlinear extension is rare.

In this study, we focus on the second case with nonlinear
assumption. The nonlinearity is presented in two aspects [10,11]. The
first is a nonlinear relationship between spectral intensity and con-
centration. The second is peak shift with increasing concentration.
In our point of view, CLS can still be used after some mathemati-
cal transformation when only the first nonlinearity presents. When
the second nonlinearity or a combination of them present, nonlinear
least squares with local polynomial interpolation (NLSLPI) is intro-
duced to deal with quantitative analysis. Nonlinear least squares
(NLS) has been proved to be a powerful tool for handling nonlin-
ear systems [12,13]. In this study, NLS was employed to estimate
the concentrations of the interested components. The Levenberg-
Marquardt (L-M) method was used to solve the NLS problem. When
using L-M, a difficulty is to estimate the function value together with
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its derivative, which are unknown usually. In this study, local poly-
nomial interpolation is used to generate the nonlinear function for
each component.

In the following, we will discuss the nonlinear system and intro-
duce NLSLPI in Section 2. Experimental data and results are pre-
sented in Sections 3 and 4 respectively. Finally, we make conclusions
of NLSLPI in Section 5.

2. Methodology

2.1. Nonlinear Model of Quantitative Analysis

Given that the mixture is composed of J components, whose spec-
tral responses are linear to the concentrations, CLS can be used to
predict the concentration of each component from the spectrum of
the mixture:

x̂ = argmin
x

∥∥∥∥∥∥s −
J∑

j=1

xj f j

∥∥∥∥∥∥
2

2

(1)

where the mixture spectrum s is row vector of length p. xj and fj rep-
resent the concentration and the reference spectrum for component
j. x = [x1, x2, . . . , xj]ᵀ is the concentration vector.

If the linearity condition can not be guaranteed, for example,
the concentration falls outside the linear range, Eq. (1) should be
modified:

x̂ = argmin
x

∥∥∥∥∥∥s −
J∑

j=1

f̃ j(xj)

∥∥∥∥∥∥
2

2

(2)

where the spectral response function f̃ j(xj) can be any function of the
concentration, not necessarily linear one. When spectral response
function exhibits the first nonlinearity, we only need to use a nonlin-
ear function gj(xj) to represent the nonlinear relationship:

f̃ j(xj) = gj(xj) f j (3)

In practice, gj(xj) can be generated by interpolating to the refer-
ence spectra with various concentrations of component j. There-
fore, instead of estimating true concentration directly, we estimate
pseudo-concentration first:

ĝ = argmin
g

∥∥∥∥∥∥s −
J∑

j=1

gj f j

∥∥∥∥∥∥
2

2

(4)

where g = [g1, g2, . . . , gJ]ᵀ is the pseudo-concentration vector. Then
the true concentration can be obtained by:

x̂j = g−1
j

(
ĝj

)
, j = 1, 2, . . . , J (5)

where g−1
j is the inverse function of gj.

When the mixture exhibits the combination of two nonlinear-
ity, the above linear squares method fails. Then the nonlinear least
squares method must be developed to predict the components of
the mixture. In this study, Levenberg-Marquardt (L-M) method is
employed.

2.2. Levenberg-Marquardt Method

L-M method is a classical method for solving nonlinear least
squares, which is based on the trust-region framework [14]. In this

study, L-M method is used for minimizing the following objective
function:

l(x) =
∥∥s − F(x)

∥∥2
2 (6)

where F(x) =
∑J

j=1 f̃ j(xj) is the sum of the pure component spectra.
L-M method performs optimization in a stepwise manner. Sup-

pose that in iteration k, the estimation is xk, according to L-M method
the solution for updating xk can be calculated as following:

d =
(

Jkᵀ Jk + kI
)−1

Jkᵀ
(

s − Fk
)

(7)

where d is the solution for updating xk and Fk = F(xk). J(x) = ∂F
∂x is

first derivative matrix and Jk = J(xk). k is the regularization param-
eter and it is critical to the convergence speed of the optimization.

When k is large enough,
(

Jkᵀ Jk + kI
)−1 ≈ 1/k and d can be regarded

yielded by Steepest Decent method. In this case, d guarantees the
reduction of the objective function but with slow convergence speed.
When k = 0, d can be regarded yielded by Quasi Newton method. In
this case, Jkᵀ Jk is not necessarily invertible and does not guarantees
the reduction of the objective function. However, when the reduction
condition is fulfilled, Quasi Newton method converges to the mini-
mum much faster than Steepest Decent method. In practice, k usually
decreases from a relatively large value and we check the reduction
condition after each decrease. The smallest value which fulfills the
reduction condition is selected as the final solution of k.

After obtaining d, we update xk by:

xk+1 = xk + d (8)

2.3. Local Polynomial Interpolation

In order to implement L-M method in our study, F(x) and J(x) are
obtained by interpolating to reference spectra with various concen-
trations. Polynomial interpolation is a common method for interpo-
lation [15]. Suppose that (n + 1) reference spectra are available, then
polynomial interpolation with degree of n can be obtained:

f̃ j(xj) = aj0 + xjaj1 + x2
j aj2 . . . + xn

j ajn, j = 1, 2, . . . , J (9)

where aj0, aj1, . . . , ajn are the polynomial coefficients for component
j. The derivative of Eq. (9) is:

∂ f̃ j

∂
xj = aj1 + 2xjaj2 + . . . + nxn−1

j an, j = 1, 2, . . . , J (10)

Therefore, we can obtain:

F(x) =
∑ J

j=1 f̃ j
(
xj

)
J(x) =

∂F
∂x

=

[
∂ f̃ 1

∂x1
,
∂ f̃ 2

∂x2
, . . . ,

∂ f̃ J

∂xJ

]
(11)

Local polynomial interpolation (LPI) aims to find the closest data
points to perform interpolation with low degree polynomial. For
example, when three is set to be the polynomial degree, four pure

component samples,
(

x(1)
j , f̃

(1)
j

)
,
(

x(2)
j , f̃

(2)
j

)
,
(

x(3)
j , f̃

(3)
j

)
,
(

x(4)
j , f̃

(4)
j

)
,

which satisfy the condition of x(1)
j ≤ x(2)

j ≤ xj ≤ x(3)
j ≤ x(4)

j are located,
and then Eqs. (9) and (10) are employed. If xj is close to the endpoints,
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