Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

Review Article

Two-photon fluorescent probe with enhanced absorption cross section for relay recognition of $Zn^{2+}/P_2O_7^{4-}$ and *in vivo* imaging

Ying Xia^a, Huihui Zhang^a, Xiaojiao Zhu^a, Qiong Zhang^a, Min Fang^a, Xiaowu Li^a, Hongping Zhou^{a,*}, Xingyuan Yang^b, Xuanjun Zhang^c, Yupeng Tian^a

^a College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, 230601 Hefei, PR China

^b Institute of Physical Science and Information Technology, Faculty of Health Sciences, Anhui University, Hefei 230601, PR China

^c Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, PR China

ARTICLE INFO

Article history: Received 18 April 2018 Received in revised form 15 June 2018 Accepted 17 June 2018 Available online 27 June 2018

Keywords: Fluorescence probe Zinc ion Two-photon Exogenous

ABSTRACT

A novel multifunctional probe, **L**, based on triphenylamine *o*-hydroxyl Schiff base was constructed for the sequential detection of $Zn^{2+}/P_2O_7^{4-}$. Interestingly, probe **L** also showed two-photon fluorescent "off-on" response to Zn^{2+} along with a large effective two-photon absorption cross-section value of 240 GM at 720 nm, a low cytotoxic and a moderate photostability, which made **L** a good candidate for two-photon fluorescence microscopy imaging and monitoring the fluctuation of exogenous Zn^{2+} .

© 2018 Elsevier B.V. All rights reserved.

Contents

1.	1. Introduction			
2.	2. Materials and Instrumentation			
3.	3. Results and Discussion			
	3.1. One-photon Absorption and Emission Properties			
	3.2. The Recognition Mechanism of L Toward Zn ²⁺			
	3.3. Two-photon Properties			
	3.4. One-photon and Two-photon Microscopy Bio-im	aging Applications	s	
	3.5. Relay Recognition of L- Zn^{2+} Toward $P_2O_7^{4-}$.			
4.	4. Conclusion			
Ackno	scknowledgment			
Apper	ppendix A. Supplementary data			
Refe	References			

1. Introduction

Zinc ion is the one of vital trace elements and widely distributed within the body. The indispensable roles of Zn²⁺ are involved in numerous biological processes including neurotransmission or modulators, enzymatic regulation and cell apoptosis [1]. Disorder of intracellular

* Corresponding author. *E-mail address:* zhpzhp@263.net (H. Zhou). free Zn²⁺ has been considered to be associated with various diseases such as diabetes, Alzheimer's disease, and immune dysfunction [2, 3]. Moreover, H₄P₂O₇ (PPi) plays important roles in a range of biological processes such as energy storage, cellular signal transduction and protein synthesis [5]. In this regard, the development for the design of effective and selective Zn²⁺ probes, especially those with bifunctional recognition, *viz*, sequentially recognizing Zn²⁺ and H₄P₂O₇ (PPi) based on the strong affinity of Zn²⁺ toward phosphates [4], is crucially important and necessary [6]. Previous research is dedicated to designing probes on the basis of one-photon (OP) fluorescence, to some extent, limiting their biological applications [7, 8]. However, for the sake of overcoming the drawbacks of high tissue auto-fluorescence, low penetration ability and photobleaching in OP fluorescence, two-photon (TP) fluorescence probe [9, 10] were used as an attractive approach for sensing analytes *in vitro* and *in vivo* microscopically. Additionally, most organic molecules with large effective two-photon absorption cross-section value (δ_{eff}) usually had the extended conjugated structures, resulting in poor solubility and cell permeability [11, 12], which hindered their further application. This trade-off between δ_{eff} and cell permeability in fluorescence probe has inspired elegant design of suitable conjugated structures [13, 14].

Herein, we highlighted a Schiff base derivative (**L**) two-photon fluorescent probe with enhanced absorption cross section for relay recognition of $Zn^{2+}/P_2O_7^{4-}$. Given the O atom of —OH and —O— bond, the N atom of —CH—N— bond and pyridine nitrogen atom with strong affinity to Zn^{2+} , **L**- Zn^{2+} extended conjugated system and enlarged the planarity, which blocked the photoinduced electron transfer (PET) process [15], and brought about the enhancement of fluorescent intensity and δ_{eff} . Relay recognition of $Zn^{2+}/P_2O_7^{4-}$ with "off–on–off" fluorescence mode was observed by naked eye. Further, the simple molecule successively served as a two-photon probe for detecting exogenous Zn^{2+} in living cells.

2. Materials and Instrumentation

Intermediate **1** was prepared according to our previous methods [16] (Scheme 1).

2: K₂CO₃ (2.20 g, 15.90 mmol) and 2-bromomethyl pyridine hydrobromide (0.85 g, 4.90 mmol) were added to 25 mL acetonitrile solution of 1 (1.00 g, 2.45 mmol). The mixture was refluxed at 75 °C for 3 h. After the solvent was evaporated under reduced pressure, the crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (10: 1, v/v) as eluent to afford 0.70 g of yellowish solid. Yield: 70%. ¹H NMR (400 MHz, DMSO- d_6), δ (ppm) (Fig. S1): 8.60–8.61 (J = 4.00, d, 1H), 7.95–7.97 (J = 8.00, d, 1H), 7.88-7.92 (I = 8.00, t, 1H), 7.63-7.65 (I = 8.00, t, 2H), 7.46-7.56 (m, 10.10)3H), 7.36–7.32 (I = 8.00, t, 6H), 6.95–7.19 (m, 9H), 5.45 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm) (Fig. S2): 151.84, 149.08, 147.66, 146.70, 144.38, 137.24, 137.12, 132.58, 130.04, 129.63, 128.21, 126.12, 124.56, 123.63, 123.05, 122.17, 121.23, 118.57, 112.36, 71.23. FT-IR (KBr, cm⁻¹): 3062.44 (w), 3031.93 (w), 1630.08 (w), 1580.80 (s), 1507.85 (w), 1490.85 (m), 1412.74 (w), 1378.74 (w), 1330.10 (w), 1279.75 (s), 1174.09 (s), 1091.45 (m), 1027.95 (m), 751.17 (s), 690.05 (s). MS (ESI) (Fig. S3): calcd for $[M + H]^+$, 500.1975; found, 500.1988. **3**: 0.05 g of Pd/C catalyst and 1.6 g of hydrazine hydrate were added into 15 mL ethanol solution of (0.40 g, 0.80 mmol) **2** at 75 °C and refluxed for about 0.5 h. The mixture was immediately filtered and 0.08 g of yellowish-white solid was obtained. Yield: 82%. ¹HNMR (400 MHz, Acetone- d_6), δ (ppm) (Fig. S4): 8.59–8.60 (J = 4.00, d, 1H), 7.80–7.84 (m, 1H), 7.64–7.66 (J = 8.00, d, 1H), 7.43–7.45 (J = 8.00, d, 2H), 7.28–7.33 (m, 5H), 7.23 (s, 1H), 7.03–7.07 (m, 6H), 6.94–7.00 (m, 5H), 6.73–6.75 (J = 8.00, d, 1H), 6.26 (s, 2H), 4.73–4.76 (J = 12.00, d, 2H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm) (Fig. S5): 157.11, 148.93, 147.09, 145.69, 138.10, 136.90, 132.56, 129.48, 127.93, 126.83, 129.78, 122.92, 122.80, 121.43, 120.85, 113.89, 109.81, 70.50. FT-IR (KBr, cm⁻¹): 3438.86 (m) 3337.89 (s), 3022.85 (s), 1619.41 (m), 1588.42 (s), 1517.15 (w), 1435.03 (m), 1292.83 (m), 1155.97 (m), 1046.48 (w), 956.22 (m), 753.64 (s), 700.322 (s), 620.91 (m), 489.60 (w). MS (ESI) (Fig. S6): calcd for [M + H]⁺, 470.2233; found, 470.2231.

L: 20 mL ethanol solution of 4-(diethylamino) salicylaldehyde (0.10 g, 0.793 mmol) was added dropwise into 20 mL ethanol solution of **3** (0.10 g, 0.529 mmol). The mixed solution was stirred at room temperature, and orange red solid gradually precipitated after 4 h. Filtrated and recrystallized with ethanol to produce 0.21 g solid. Yield: 84%. ¹H NMR (400 MHz, DMSO- d_6), δ (ppm) (Fig. S7): 14.31 (s, 1H), 8.75 (s, 1H), 8.58–8.59 (*J* = 4.00, d, 1H), 7.78–7.85 (m, 2H), 7.51–7.53 (*J* = 8.00, d, 3H), 7.45 (s, 1H), 7.22-7.39 (m, 9H), 7.00-7.17 (m, 9H), 6.33-6.35 (*I* = 8.00, d, 1H), 5.35 (s, 2H), 3.44-3.48 (m, 4H), 1.18-1.22 (J = 8.00, t, 6H). ¹³C NMR (100 MHz, Acetone- d_6), δ (ppm) (Fig. S8): 164.70, 159.71, 148.88, 147.51, 133.73, 127.63, 124.30, 122.44, 118.62, 110.76, 103.67, 97.38, 70.89, 44.07, 12.01. FT-IR (KBr, cm⁻¹): 3023.99 (w), 2969.98 (m), 1589.11 (m), 1521.62 (m), 1419.19 (w), 1349.12 (w), 1276.30 (w), 1125.15 (m), 959.19 (w), 819.62 (m), 752.87 (s), 696.19 (s), 619.36 (w). MS (ESI) (Fig. S9): calcd for [M + H]⁺: 645.3230; found, 645.3245.

3. Results and Discussion

3.1. One-photon Absorption and Emission Properties

Theoretical calculations give us the inspiration that probe **L** delivers high selectivity toward Zn^{2+} , as evidenced by Table S1. In our situation, probe **L** can detect Zn^{2+} in various solvents (Fig. S10). For biological application convenience, probe **L** was dissolved in DMSO, of which optical property was studied by emission spectra. It exhibited a main emission bands at 520 nm when excited at 450 nm. The fluorescence quantum yield of probe **L** ($\Phi = 6.49\%$) was very low but increased quickly upon interacting with Zn^{2+} ($\Phi = 19.56\%$), and the fluorescence lifetimes also varied from 0.166 ns to 0.222 ns (Fig. S11), imparting a selective fluorescence recognition to Zn^{2+} . Subsequently, to confirm the high

Scheme 1. Synthetic route for probe L.

Download English Version:

https://daneshyari.com/en/article/7667291

Download Persian Version:

https://daneshyari.com/article/7667291

Daneshyari.com