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1. Introduction

The well-known Noether’s theorem [1] states that if the variational integral is invariant with respect to a one-parameter
group of transformations then a certain formula provides a conservation law for the corresponding Euler-Lagrange equation.
Thus, according to Noether’s theorem, the invariance of the variational integral is a sufficient condition for existence of the
conservation law. It has been proved in [2] that the necessary and sufficient condition for existence of this conservation
law is the invariance of the value of the variational integral on the solutions of the Euler-Lagrange equation. The latter result
establishes a one-to-one correspondence between a certain invariance of the variational integral and conservation laws.

The simplest way to prove the above statements is based on the following operator identity [3] (for the sake of simplicity
we write it for second-order Euler-Lagrange equations):
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Here x = (x‘ ,X") are the independent variables, u = (u!,...,u™) are the dependent variables with the first-order deriva-
tives uqy = {u"} where
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The variational integral with the Lagrangian L is invariant with respect to an r-parameter group of transformations generated
by the operators
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if and only if the left-hand side of the identity (1.1) vanishes,
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2. Accompanying equations

The crucial observation for our extension of Noether’s theorem is that the left-hand side of the identity (1.1) depends on
first-order derivatives, whereas each summand in the right-hand side contains second order derivatives, which cancel each
other upon summation. The situation is the same for higher-order Lagrangians L.

In view of this observation we suggest to modify the right-hand side of the identity (1.1) as follows:
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where B' = B'(x/, u*, uk,...) are arbitrary smooth functions of a finite number of arguments.

Definition 1. The equations
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are called accompanying equations for the Euler-Lagrange equations

=0, k=1,....m. (2.3)

Proposition 1. Let the variational integral with the Lagrangian L be invariant with respect to an r-parameter group of transfor-
mations. Then the accompanying Eqs. (2.2) possess the following conservation laws:

Di((”] 7u‘€”)aa_Lk L Bi>:O’ a=1,2,...,r. (2.4)

Proof. This property follows from the identity (2.1). O

Remark 1. According to Bessel-Hagen (see [4], the beginning of Section 1), Noether told him that in her theorem on conser-
vation laws the invariance condition (1.2) can be replaced with the divergence condition
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where P' = P'(xi, uk, uk,...) are any smooth functions of a finite number of arguments. In this case the accompanying Eq. (2.2)
have the following conservation laws:
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3. Application to second-order ODEs

We begin with the second-order ODEs possessing Lie point symmetries. Lie solved the problem of group classification of
these equations [5] (see also [6], Table 9). The classification result is given in Table 1.
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